Let $F := \mathbb R^E$ be the collection of all maps from $E$ to $\mathbb R$. Let $\mathbb R_x := \mathbb R$ for all $x\in E$. Then we can write $$F = \prod_{x\in E} \mathbb R_x.$$ In this way, we endow $F$ with the product topology. Of course, $E^\star \subseteq F$. Let $i:E^\star_\mathrm{w} \to F, f \mapsto f$ be the canonical injection. Let's prove that $i$ is continuous. For $x\in E$, let $\pi_x: F \to \mathbb R_x, f \mapsto f(x)$ be the canonical projection. It suffices to show that $\pi_x \circ i:E^\star_\mathrm{w} \to \mathbb R_x, f \mapsto \langle f, x \rangle$ is continuous for all $x\in E$. This is clearly true due to the construction of the weak$^\star$ topology.
Lemma: Let $(X, \tau)$ be a topological space, $A \subseteq X$, and $\tau_A$ the subspace topology of $A$. Let $a\in A$ and $(x_d)_{d \in D}$ is a net in $A$. Then $x_d \to a$ in $\tau$ if and only if $x_d \to a$ in $\tau_A$.
Clearly, $\operatorname{im} i = E^\star$. We denote by $E^\star_\tau$ the set $E^\star$ together with the subspace topology $\tau$ induced from $F$. Then $i:E^\star_\mathrm{w} \to E^\star_\tau$ is bijective. Let $f\in E^\star_\mathrm{w}$ and $(f_d)_{d\in D}$ be a net in $E^\star_\mathrm{w}$ such that $f_d \to f$. Because $i:E^\star_\mathrm{w} \to F$ is continuous, $f_d \to f$ in the topology of $F$. By our lemma, $f_d \to f$ in $E^\star_\tau$. Hence $i:E^\star_\mathrm{w} \to E^\star_\tau$ is indeed continuous.
Let $i^{-1}:E^\star_\tau \to E^\star_\mathrm{w}$ be the inverse of $i:E^\star_\mathrm{w} \to E^\star_\tau$. Let's prove that $i^{-1}$ is continuous. It suffices to show that $\varphi_x: E^\star_\tau \to \mathbb R, f \mapsto \langle f, x\rangle$ is continuous for all $x\in E$. This is indeed true because $\varphi_x = \pi_x \restriction E^\star$. Notice that continuous map sends compact set to compact set. Hence it suffices to prove that $\mathbb B_{E^\star}$ is compact in $\tau$. By our lemma, it suffices to prove that $\mathbb B_{E^\star}$ is compact in the topology of $F$.
Let $B_1 := \{f\in F \mid f \text{ is linear}\}$ and $B_2 := \prod_{x\in E}[-|x|, |x|]$. Then $\mathbb B_{E^\star} = B_1 \cap B_2$. The closed interval $[-|x|, |x|]$ is clearly compact. By Tychonoff's theorem, $B_2$ is compact.
Let $f\in F$ and $(f_d)_{d\in D}$ be a net in $B_1$ such that $f_d \to f$. Because convergence in product topology is equivalent to pointwise convergence, we get $f_d(x) \to f(x)$ for all $x\in E$. Then $f_d(x) + f_d(y) =f_d(x+y) \to f(x+y)$. On the other hand, $f_d(x) \to f(x)$ and $f_d(y) \to f(y)$. This implies $f(x+y)=f(x)+f(y)$. Similarly, $f(\lambda x) =\lambda f(x)$ for all $\lambda \in \mathbb R$. Hence $B_1$ is closed. The intersection of a closed set and a compact set is again compact. This completes the proof.