Let $G$ be a Lie group, $H < G$ a Lie subgroup. Let $X \subset G$. Under what sufficient conditions on $X$ is it true that the natural mapping $X/H \to G/H$ is a homeomorphism? And what conditions are necessary? (obvious: $X$ must intersect with every equivalence class)
In other words, I'm trying to learn how to compute quotients by subgroups actions. Sometimes we can take $X$ as a complete set of representatives. For example, if $G = \mathbb{R}^2$, $H = \mathbb{R}$, then we can take the graph of any continuous function. Or if $G = S^3$, $H = \{a + bi ~|~ a^2 + b^2 = 1\} \cong S^1$, then we can take as $X$ the subset of all elements of the form $a + bj + ck$ (thus $S^3/S^1 = S ^2$). Sometimes this is impossible: for example, if $G = S^1$, $H = C_n$, then the best we can take is an arc (in which it remains to identify more extreme points), and any complete set of representatives does not have some important good properties for this (unknown to me).
I'm not interested in complete sets of representatives , I just illustrated the question on them: I'm interested in any ways of calculating the quotient.
Update (01.02.2022, 22:34). In the second example, $X$ is not a complete sets of representatives: it is necessary to identify the opposite points of the sphere and identify the whole circle $a = 0$, after which the two-dimensional sphere $S^2$ will again be obtained.