Here is the proof of how I got $m(x)$
and since we're till speaking on approximation i also want to share this to you (degrees) @claude leibovici
$$ \sin{5} \approx \frac{1}{6+\sqrt{3}+\sqrt{14}}$$
The factorial function above is actually extended to the gamma function, but i am using factorial notation for simplicity $ \Gamma(x) = (x-1)!$ and i was able to write out the $m(x)$ function using help from euler reflextion formula check here
$$ {x}!(-x)! = \frac{\pi x }{\sin{\pi x }}$$
I reduced each term in the factorial of $m(x)$ so that i would always get it's negative face by using ${x}!=x(x-1)!$ and ignore product of unity there
$$
\begin{array}
\\
m(1) = 1\\
m(2) = \frac{1}{2}!\\
m(3) = \frac{1}{3}!\cdot\frac{2}{3}!\\
m(3) = \frac{1}{3}!\cdot\frac{-1}{3}!\cdot\frac{2}{3}\\
m(4) = \frac{1}{4}!\cdot\frac{2}{4}!\cdot\frac{3}{4}!\\
m(4) = \frac{1}{4}!\cdot\frac{-1}{4}!\cdot\frac{2}{4}!\cdot\frac{3}{4}\\
m(5) = \frac{1}{5}!\cdot\frac{2}{5}!\cdot\frac{3}{5}!\cdot\frac{4}{5}!\\
m(5) = \frac{1}{5}!\cdot\frac{-1}{5}!\cdot\frac{2}{5}!\cdot\frac{-2}{5}!\cdot\frac{3}{5}\cdot\frac{4}{5}\\
m(6) = \frac{1}{6}!\cdot\frac{2}{6}!\cdot\frac{3}{6}!\cdot\frac{4}{6}!\cdot\frac{5}{6}!\\
m(6) = \frac{1}{6}!\cdot\frac{-1}{6}!\cdot\frac{2}{6}!\cdot\frac{-2}{6}!\cdot\frac{3}{6}!\cdot\frac{4}{6}\cdot\frac{5}{6}\\
m(x) = \frac{1}{x}!\cdot\frac{2}{x}!\cdot\frac{3}{x}!\cdot\frac{4}{x}\cdots\frac{x-1}{x}!\\
m(x) = \frac{1}{x}!\cdot\frac{-1}{x}!\cdot\frac{2}{x}!\cdot\frac{-2}{x}!\cdot\frac{3}{x}!\cdot\frac{-3}{x}!\cdots\frac{n}{x}!\cdot\frac{-n}{x}!\cdots\cdots\frac{x-n}{x}\cdots\frac{x-3}{x}\cdot\frac{x-2}{x}\cdot\frac{x-1}{x}\cdot f(n)\\
\end{array}
$$
above, $n$ represents a function of the variable $x$ and $f(n)$ is a function of $n$
$$n=
\begin{cases}
\frac{x}{2}-1, &\text{if $x$ is even}\\
\frac{x+1}{2}-1, &\text{if $x$ is odd}
\end{cases}
$$
$$f(n)=
\begin{cases}
1, &\text{if $x$ is odd}\\
\frac{1}{2}!, &\text{if $x$ is even}
\end{cases}
$$
$\frac{1}{2}! = m(2)$ and from the $m(x)$ formula it is directly equal to $\frac{\sqrt{\pi}}{2}$
$m(x)$ is variant, so i'll solve each part of it separately and apply some trigonometry identity to simplify
$$\frac{1}{x}!\cdot\frac{-1}{x}!\cdot\frac{2}{x}!\cdot\frac{-2}{x}!\cdot\frac{3}{x}!\cdot\frac{-3}{x}!\cdots\frac{n}{x}!\cdot\frac{-n}{x}! =
\frac{\frac{\pi}{x} }{\sin{\frac{\pi}{x} }}\cdot\frac{ \frac{2\pi}{x} }{\sin{\frac{2\pi}{x} }}\cdot\frac{\frac{3\pi}{x} }{\sin{\frac{3\pi}{x} }}\cdots\frac{\frac{n\pi}{x} }{\sin{\frac{n\pi}{x} }}$$
$$\frac{1}{x}!\cdot\frac{-1}{x}!\cdot\frac{2}{x}!\cdot\frac{-2}{x}!\cdot\frac{3}{x}!\cdot\frac{-3}{x}!\cdots\frac{n}{x}!\cdot\frac{-n}{x}! = \frac{ {n}!\cdot \pi^{n}}{ x^n \cdot (\sin{\frac{\pi}{x}}\cdot\sin{\frac{2\pi}{x}}\cdot\sin{\frac{3\pi}{x}}\cdots\sin{\frac{n\pi}{x}}) }$$
$$\frac{1}{x}!\cdot\frac{-1}{x}!\cdot\frac{2}{x}!\cdot\frac{-2}{x}!\cdot\frac{3}{x}!\cdot\frac{-3}{x}!\cdots\frac{n}{x}!\cdot\frac{-n}{x}! = \frac{{n}!\cdot \pi^n\cdot \sqrt{2^{x-1}}}{x^n\cdot \sqrt{x}}$$
$$\frac{x-n}{x}\cdots\frac{x-3}{x}\cdot\frac{x-2}{x}\cdot\frac{x-1}{x}\cdot f(n) = { (x-n)\cdots(x-3)(x-2)(x-1) }\cdot \frac{f(n)}{x^n}$$
$${x}! = x(x-1)(x-2)(x-3)\cdots(x-n)\cdot(x-n-1)!$$
$$(x-1)(x-2)(x-3)\cdots(x-n) = \frac{{x}!}{x(x-n-1)!}$$
$$\frac{x-n}{x}\cdots\frac{x-3}{x}\cdot\frac{x-2}{x}\cdot\frac{x-1}{x}\cdot f(n) = \frac{ {x}!f(n)}{x(x-n-1)!x^n}$$
$$m(x) = \frac{{n}!\cdot\pi^n\cdot\sqrt{2^{x-1}}\cdot{x}!\cdot f(n)}{x^{2n}\cdot\sqrt{x}\cdot x\cdot (x-n-1)!}$$
if we simplify further to remove the $n$ and $f(n)$, we would arrive at the formula i wrote in the question