I am trying to solve this fourth-degree equation: $\omega^4+iB_3\omega^3+B_2\omega^2+iB_1\omega+B_0=0$, where coefficients $B_{0,1,2,3}$ are real, and $i$ is the imaginary number. The numerical values of these coefficients are: $B_0\approx10^6$, $B_1\approx10^7$, $B_2\approx-10^6$ and $B_3\approx-2$. Since it is a fourth-degree equation, so it must have only four solutions which are listed below. \begin{multline} \omega_{1}=-i \frac{B_3}{4}+\frac{1}{2}\ell -\frac{1}{2}\biggl(-\frac{4B_2}{3}-\frac{B_3^2}{2}-\frac{(12B_0+B_2^2+3B_1B_3)}{3\digamma}\\ -\frac{\digamma}{3} +\frac{i(-8B_1+4B_2B_3+B_3^3)}{4\ell}\biggr)^{1/2},\label{sol-1} \end{multline} \begin{multline} \omega_{2}=-i \frac{B_3}{4}+\frac{1}{2}\ell +\frac{1}{2}\biggl(-\frac{4B_2}{3}-\frac{B_3^2}{2}-\frac{(12B_0+B_2^2+3B_1B_3)}{3\digamma}\\ -\frac{\digamma}{3} +\frac{i(-8B_1+4B_2B_3+B_3^3)}{4\ell}\biggr)^{1/2},\label{sol-2} \end{multline} \begin{multline} \omega_{3}=-i \frac{B_3}{4}-\frac{1}{2}\ell -\frac{1}{2}\biggl(-\frac{4B_2}{3}-\frac{B_3^2}{2}-\frac{(12B_0+B_2^2+3B_1B_3)}{3\digamma}\\ -\frac{\digamma}{3} -\frac{i(-8B_1+4B_2B_3+B_3^3)}{4\ell}\biggr)^{1/2},\label{sol-3} \end{multline} \begin{multline} \omega_{4}=-i \frac{B_3}{4}-\frac{1}{2}\ell +\frac{1}{2}\biggl(-\frac{4B_2}{3}-\frac{B_3^2}{2}-\frac{(12B_0+B_2^2+3B_1B_3)}{3\digamma}\\ -\frac{\digamma}{3} -\frac{i(-8B_1+4B_2B_3+B_3^3)}{4\ell}\biggr)^{1/2},\label{sol-4} \end{multline} where \begin{multline} \digamma=\frac{1}{2^{1/3}}\Biggl(-27 B_1^2-72B_0 B_2+2B_2^3+9B_1B_2B_3-27B_0B_3^2\\ +\biggl\{-4(12B_0+B_2^2+3B_1B_3)^3+(-27B_1^2-72B_0B_2+2B_2^3+9B_1B_2B_3-27B_0B_3^2)^2\biggr\}^{1/2}\Biggr)^{1/3} \end{multline} and \begin{equation} \ell=\biggl(-\frac{2B_2}{3}-\frac{B_3^2}{4}+\frac{(12B_0+B_2^2+3B_1B_3)}{3\digamma}+\frac{\digamma}{3}\biggr)^{1/2}. \end{equation}
All the four solutions of this equation contain the term $\digamma$. The $\digamma$ can be written as $\digamma\approx(B_2^3)^{1/3}$, because the term $(2B_2^3)$ is the most dominant in the parenthesis of $\digamma$. Since $B_2$ is negative, we can also write write: $\digamma\approx|B_2|(-1)^{1/3}$. The term $(-1)^{1/3}$ has 3 distinct roots which are: $(-1)$, $\Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)$ and $\Bigl(\frac{1}{2}-i\frac{\sqrt{3}}{2}\Bigr)$.
So, my question is: since all the four solutions of this fourth-degree equation contain $(-1)^{1/3}$, does each solution have 3 different values corresponding to distinct roots of $(-1)^{1/3}$. For example: $\omega_1$ have 3 values corresponding to each root of $(-1)^{1/3}$. In that way, is it correct to say, this fourth-degree equation will have 12 solutions in total. Please see below all the four roots:
I have solved the fourth degree equation with Mathematica, and given numerical values to $B$ coefficients. It is found that by default, mathematica choses the root: $\Bigl(\frac{1}{2}+i\frac{\sqrt{3}}{2}\Bigr)$ for $(-1)^{1/3}$. But mathematically, other roots are also valid. Which one root should I chose?
"\( a z^4+z^3+z^2+dz+e=0\) counting roots"on SearchOnMath. You can find this thread on how to count roots of a quartic equation, for instance. – José Claudinei Ferreira Feb 23 '22 at 01:16