To calculate this integral we can utilize the following Ramanujan identity:
$$\int_0^\sqrt{1-x^2} \frac{K(y)}{\sqrt{1-y^2}\sqrt{1-x^2-y^2}}dy=\frac{2}{1+x}K^2\left(\sqrt{\frac{1-x}{1+x}}\right)\tag{*}$$
This is found as eq. $(42)$ in this article by Yajun Zhou (and proven a bit later).
In order to be able to apply the above identity, we'll start similarly to @Miracle Invoker's answer by applying some substitutions alongside Landen's Transformation (LT) to the second integral.
$$\int_0^1 \frac{x\sqrt{1-x^2}K^2(x)}{2-x^2}dx\overset{1-x^2\to x^2}=\int_0^1\frac{x^2}{1+x^2}K^2(\sqrt{1-x^2})dx$$
$$\overset{LT}=4\int_0^1 \frac{x^2K^2\left(\frac{1-x}{1+x}\right)}{(1+x^2)(1+x)^2}dx\overset{\frac{1-x}{1+x}\to x}=\int_0^1 K^2(x)\left(1-\frac{2x}{1+x^2}\right)dx $$
Plugging this into the original integral yields:
$$\int_0^1 K^2(x)dx-\int_0^1 \frac{x\sqrt{1-x^2}K^2(x)}{2-x^2}dx\overset{x^2\to x}=\int_0^1 \frac{K^2(\sqrt x)}{1+x}dx$$
$$\overset{\large x\to \frac{1-x}{1+x}}=\int_0^1 \frac{K^2\left(\sqrt{\frac{1-x}{1+x}}\right)}{1+x}dx\overset{\large (*)}=\frac12\int_0^1 \int_0^{\sqrt{1-x^2}}\frac{K(y)}{\sqrt{1-y^2} \sqrt{1-x^2-y^2}}dydx$$
$$=\frac12\int_0^1 \frac{K(y)}{\sqrt{1-y^2}} \int_0^\sqrt{1-y^2}\frac{1}{\sqrt{1-x^2-y^2}}dxdy=\frac{\pi}{4}\int_0^1 \frac{K(y)}{\sqrt{1-y^2}}dy =\boxed{\frac{\Gamma^4\left(\frac{1}{4}\right)}{64}}$$
Where the last integral can be found evaluated here as:
$$\int_0^1 \frac{K(y)}{\sqrt{1-y^2}}dy = \int_0^1 \frac{K(y)}{\sqrt y}dy =\frac12 \left(\int_0^1 \frac{dy}{\sqrt y\sqrt{1-y^2}}\right)^2=\frac{\Gamma^4\left(\frac{1}{4}\right)}{16\pi}$$