Another approach:
Let $$I= \int_{0}^{\infty} \frac{\sin^{2}(x)}{\cosh(x) + \cos (x)} \frac{\mathrm dx}{x}.$$
Using the identity $$\frac{\sin (x)}{\cosh(x) + \cos(x)} = 2 \sum_{n=1}^{\infty} (-1)^{n+1} \sin(nx) e^{-nx} = 2 \sum_{n=\color{red}{0}}^{\infty} (-1)^{n+1} \sin(nx) e^{-nx}, $$ we have
$ \begin{align} I &= 2\int_{0}^{\infty} \frac{\sin(x)}{x}\sum_{n=0}^{\infty} (-1)^{n+1}\sin(nx)e^{-nx} \, \mathrm dx \\ &= 2\sum_{n=0}^{\infty} (-1)^{n+1} \int_{0}^{\infty} \frac{\sin(x) \sin(nx)}{x} e^{-nx} \, \mathrm dx \\ &= 2\sum_{n=0}^{\infty} (-1)^{n+1} \int_{0}^{\infty} \sin(x) \sin(nx) \int_{0}^{\infty} e^{-(n+t)x} \, \mathrm dt \, \mathrm dx \\ &=2\sum_{n=0}^{\infty} (-1)^{n+1} \int_{0}^{\infty} \int_{0}^{\infty} \sin(x) \sin (nx)e^{-(n+t)x} \, \mathrm dx \, \mathrm dt \\ &= \sum_{n=0}^{\infty} (-1)^{n+1} \int_{0}^{\infty}\int_{0}^{\infty} \left(\cos\left((n-1)x \right)- \cos \left((n+1)x \right) \right)e^{-(n+t)x} \, \mathrm dx \, \mathrm dt \\ &= \sum_{n=0}^{\infty} (-1)^{n+1} \int_{0}^{\infty} \left(\frac{n+t}{(n-1)^{2}+(n+t)^{2}}- \frac{n+t}{(n+1)^{2}+(n+t)^{2}} \right) \, \mathrm dt \\ &= \frac{1}{2}\sum_{n=0}^{\infty} (-1)^{n+1} \ln \left(\frac{2n^{2}+2n+1}{2n^{2}-2n+1} \right) \\ &\overset{(1)}{=} \frac{1}{2} \sum_{n=0}^{\infty} \ln \left(\frac{2(2n)^{2}-2(2n)+1}{2(2n)^2+2(2n)+1} \ \frac{2(2n+1)^{2}+2(2n+1)+1}{2(2n+1)^{2}-2(2n+1)+1}\right) \\ &= \frac{1}{2} \sum_{n=0}^{\infty} \ln \left(\frac{8n^{2}-4n+1}{8n^{2}+4n+1} \ \frac{8n^{2}+12n+5}{8n^{2}+4n+1} \right) \\ &= \frac{1}{2} \ln \left( \prod_{n=0}^{\infty} \frac{(8n^{2}-4n+1)(8n^{2}+12n+5)}{(8n^{2}+4n+1)^{2}} \right) \\ &= \frac{1}{2} \ln \left( \lim_{N \to \infty} \prod_{n=0}^{N} \frac{(8n^{2}-4n+1)(8n^{2}+12n+5)}{(8n^{2}+4n+1)^{2}} \right) \\ &= \frac{1}{2} \ln \left(\lim_{N \to \infty} \prod_{n=0}^{N} \frac{\left(n- \frac{1+i}{4} \right)\left(n- \frac{1-i}{4} \right) \left(n+ \frac{3-i}{4} \right)\left(n+ \frac{3+i}{4} \right)}{\left(n+ \frac{1-i}{4} \right)^{2}\left(n+ \frac{1+i}{4} \right)^{2} } \right) \\ & \overset{(2)}{=} \small \frac{1}{2} \ln \left( \lim_{N \to \infty} \frac{\Gamma \left(N+1- \frac{1+i}{4} \right) \Gamma \left(N+1- \frac{1-i}{4} \right) \Gamma \left(N+ 1+\frac{3-i}{4} \right) \Gamma\left(N+1+ \frac{3+i}{4} \right)\Gamma^{2} \left(\frac{1-i}{4}\right) \Gamma^{2} \left(\frac{1+i}{4} \right)}{ \Gamma \left(- \frac{1+i}{4} \right) \Gamma \left(-\frac{1-i}{4} \right) \Gamma \left(\frac{3-i}{4} \right) \Gamma \left(\frac{3+i}{4} \right)\Gamma^{2} \left(N+ 1+\frac{1-i}{4} \right) \Gamma^{2}\left(N+1+ \frac{1 +i}{4} \right)} \right) \\ & \overset{(3)}{=} \frac{1}{2} \ln \left( \lim_{N \to \infty} \frac{\Gamma^{4}(N) \, N^{(3-i)/4} N^{(3+i)/4} N^{(7-i)/4} N^{(7+i)/4} \, \Gamma^{2} \left(\frac{1-i}{4} \right)\Gamma^{2} \left(\frac{1+i}{4} \right)}{ 8 \, \Gamma^{2} \left(\frac{3-i}{4} \right) \Gamma^{2} \left(\frac{3+i}{4} \right)\, \Gamma^{4}(N) \, N^{(5-i)/2} N^{(5+i)/2} } \right) \\&=\frac{1}{2} \ln \left( \lim_{N \to \infty} \frac{N^{5} \, \Gamma^{2} \left(\frac{1-i}{4} \right)\Gamma^{2} \left(\frac{1+i}{4} \right)}{ 8 \, \Gamma^{2} \left(\frac{3-i}{4} \right) \Gamma^{2} \left(\frac{3+i}{4} \right) N^{5}} \right) \\ &= \frac{1}{2} \ln \left( \frac{\Gamma^{2} \left(\frac{1-i}{4} \right)\Gamma^{2} \left(\frac{1+i}{4} \right)}{ 8 \, \Gamma^{2} \left(\frac{3-i}{4} \right) \Gamma^{2} \left(\frac{3+i}{4} \right)} \right) \\ &= - \frac{3}{2} \ln(2) + \ln \left(\frac{\Gamma\left(\frac{1-i}{4} \right)\Gamma\left(\frac{1+i}{4} \right)}{ \Gamma \left(\frac{3-i}{4} \right) \Gamma \left(\frac{3+i}{4} \right)} \right). \end{align}$
You can use the property $\overline{\Gamma(z)} = \Gamma(\overline{z})$ to show that this is equivalent to the result from my other answer.
$(1)$ Combine adjacent terms.
$(2)$ $\prod_{n=0}^{N} \left( n+z \right) = \frac{\Gamma(N+1+z)}{\Gamma(z)}$ if $z$ is not zero or a negative integer
$(3)$ $\Gamma(x+z) \sim \Gamma(x) x^{z}$ as $x \to + \infty$