If $M=\{(x,y)\in \mathbb{R}^2|2x+y=0 \}$ and $N=\{(x,y)\in \mathbb{R}^2|x-y=0 \}$. Show that $M+N=\mathbb{R}^2$
My Attempt:
$M+N=\{(x,y)\in \mathbb{R}^2|(x,y)=(x_1,y_1)+(x_2,y_2);\ (x_1,y_1)\in M,\ (x_2,y_2) \in N \}$ where $x=x_1+x_2$ and $y=y_1+y_2$ since $(x_1,y_1) \in M$ and $(x_2,y_2) \in N$. Now $2x_1+y_1=0$ and $x_2-y_2=0$ respectively implies that $M+N=\{(x,y)\in \mathbb{R}^2|x=x_1+x_2,y=-2x_1+x_2) \}$. How do I show that $M+N=\mathbb{R}^2$?