-3

What is the answer of

$$\prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2}\right)$$

which is

$$\frac 5 4 \times \frac{10}{9} \times \frac{17}{16} \times \cdots$$

This question is from a test-paper of my little sister who is in high school and the hint provided are:

$$\ln(x) < x-1$$

$$\sum_{n=1}^\infty \frac1{n^2}= \frac{\pi^2}{6}$$

My current work:

$$\prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2}\right) < \prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2-1}\right) = \prod_{n=2}^{\infty} \frac{n\cdot n}{(n+1)(n-1)} = 2$$

$$ \prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2}\right) < \prod_{n=2}^{\infty} \mathrm{e}^{1/n^2} = \mathrm{e}^{\pi^2/6-1} \approx 1.906 $$

1 Answers1

1

Thanks @Gary

from:

$$ \sinh(z) = z\prod_{n=1}^{\infty} \left(1+\frac{z^2}{n^2 \pi^2}\right) $$

with $z=\pi$, we get:

$$ \prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2}\right) = \frac{\sinh \pi}{2\pi} \approx 1.82804 < 2 $$