What is the answer of
$$\prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2}\right)$$
which is
$$\frac 5 4 \times \frac{10}{9} \times \frac{17}{16} \times \cdots$$
This question is from a test-paper of my little sister who is in high school and the hint provided are:
$$\ln(x) < x-1$$
$$\sum_{n=1}^\infty \frac1{n^2}= \frac{\pi^2}{6}$$
My current work:
$$\prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2}\right) < \prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2-1}\right) = \prod_{n=2}^{\infty} \frac{n\cdot n}{(n+1)(n-1)} = 2$$
$$ \prod_{n=2}^{\infty} \left( 1+\frac{1}{n^2}\right) < \prod_{n=2}^{\infty} \mathrm{e}^{1/n^2} = \mathrm{e}^{\pi^2/6-1} \approx 1.906 $$