For $-\gamma<t<\gamma$ and $0<\gamma<\frac{\pi}{2}$, I want to verify the identity
$$\int_{-\infty}^{\infty} e^{-t \lambda} \frac{\sinh\left(\frac{\lambda}{2}(\pi-2\gamma)\right)}{\sinh\left(\frac{\lambda}{2}\pi\right)} \mathrm{d} \lambda = \frac{\sin(2\gamma)}{\sin(\gamma+t)\sin(\gamma-t)}$$ using elementary methods if possible, and I am also curious if this can be done using bilateral Laplace Transform?
To that end, I want to know if we can use the inverse Laplace Transform to solve the problem in the reverse direction, that is given the function $g(t,\gamma):=\frac{\sin(2\gamma)}{\sin(\gamma+t)\sin(\gamma-t)}$, determine $f(\lambda, \gamma)$ such that $$\int_{-\infty}^{\infty} e^{-t \lambda} f(\lambda,\gamma) \mathrm{d} \lambda = g(t,\gamma)$$ Thanks for your help in advance.
Added later Regarding the first part of my question: Notice that the requirements on $\gamma$ and $t$ ensure that the integrand $e^{-t \lambda} \frac{\sinh\left(\frac{\lambda}{2}(\pi-2\gamma)\right)}{\sinh\left(\frac{\lambda}{2}\pi\right)}$ has exponential decay as $\lambda \to \pm \infty$, ensuring the convergence of the integral.