This matrix $T$ is in fact invertible for all $a_{ij}\in\mathbb Z$, not just for digits. Indeed, if we reduce the coefficients of $T$ modulo $100$, we have $\det(T)\equiv d \ ( \mod{100}) $ where
$$
d = \left|\begin{matrix} 9 & 46 & 18 \\ 96 & 47 & 42 \\ 92 & 4 & 17 \end{matrix}\right|
$$
We then compute $d$ using the usual row and column operations, combined with reduction modulo $100$ :
$$
\begin{array}{lcl}
d &=& \left|\begin{matrix} 9 & 46 & 18 \\ 96 & 47 & 42 \\ 92 & 4 & 17 \end{matrix}\right| \\
&=& \left|\begin{matrix} 9 & 46 & 18 \\ -4 & 47 & 42 \\ -8 & 4 & 17 \end{matrix}\right| \ (\textrm{reduce modulo}\ 100)\\
&=& \left|\begin{matrix} 1 & 50 & 35 \\ -4 & 47 & 42 \\ -8 & 4 & 17 \end{matrix}\right| \ (\textrm{using}\ (R_1) \gets (R_1)+(R_3) )\\
&=& \left|\begin{matrix} 1 & 50 & 35 \\ 0 & 247 & 182 \\ -8 & 4 & 17 \end{matrix}\right| \ (\textrm{using}\ (R_2) \gets (R_2)+4(R_1) ) \\
&=& \left|\begin{matrix} 1 & 50 & 35 \\ 0 & 247 & 182 \\ 0 & 404 & 297 \end{matrix}\right| \ (\textrm{using}\ (R_3) \gets (R_3)+8(R_1) ) \\
&=& \left|\begin{matrix} 247 & 182 \\ 404 & 297 \end{matrix}\right| \ (\textrm{expand first column} ) \\
&=& \left|\begin{matrix} 47 & -18 \\ 4 & -3 \end{matrix}\right| \ (\textrm{reduce modulo}\ 100 ) \\
&=& 47\times(-3)-4\times(-18)=-141+72=-69.
\end{array}
$$
This finishes the proof.