7

Latest edit

  1. Thanks to @Quanto for settling down the question by proving the odd one as:$$I_{2n+1}= \frac{5\pi}{64}\ln2+\frac3{16(2n+1)}\bigg(\frac\pi4-\sum_{j=0}^{2n}\frac{(-1)^j}{2j+1} \bigg)$$ By our results for both odd and even multiples $n$ of $x$, we can conclude that

$$ \lim _{n \rightarrow \infty} \displaystyle \int_{0}^{\frac{\pi}{4}}\left[\sin ^{6}(nx)+\cos ^{6}(nx)\right] \ln (1+\tan x) d x =\frac{5 \pi\ln 2}{64} $$

  1. As asked by @Claude Leibovici for the powers other than 6, I had generalised my result to even powers below as an answer: $$ I(m,n):=\int_{0}^{\frac{\pi}{4}}\left[\cos ^{2 m}(2 nx)+\sin ^{2 m}(2 n x)\right] \ln (1+\tan x) d x= \frac{\pi \ln 2}{4} \cdot \frac{(2 m-1) ! !}{(2 m) ! !} $$

In order to evaluate the even case

$$\int_{0}^{\frac{\pi}{4}}\left[\sin^{6}(2 n x)+\cos^{6}(2 nx)\right] \ln (1+\tan x) d x $$ we first simplify $\displaystyle \begin{aligned}\sin ^{6}(2 n x)+\cos ^{6}(2 n x) =& {\left[\sin ^{2}(2 n x)+\cos ^{2}(2 n x)\right]\left[\sin ^{4}(2 n x)-\sin ^{2}(2 n x) \cos ^{2}(2 n x)\right) } \\&\left.+\cos ^{4}(2 n x)\right] \\=& 1-3 \sin ^{2}(2 n x) \cos ^{2}(2 n x) \\=& 1-\frac{3}{4} \sin ^{2}(4 n x) \\=& 1-\frac{3}{8}(1-\cos 8 n x) \\=& \frac{1}{8}(5+3 \cos (8nx))\end{aligned} \tag*{} $

To get rid of the natural logarithm, a simple substitution transforms the integral into

$\begin{aligned}I &=\frac{1}{8} \int_{0}^{\frac{\pi}{4}}(5+3 \cos (8 n x)) \ln (1+\tan x) d x \\& \stackrel{x\mapsto\frac{\pi}{4}-x}{=} \frac{1}{8} \int_{0}^{\frac{\pi}{4}}(5+3 \cos (8 n x)) \ln \left(1+\tan \left(\frac{\pi}{4}-x\right)\right) d x \\&=\frac{1}{8} \int_{0}^{\frac{\pi}{4}}(5+3 \cos (8 n x)) \ln \left(\frac{2}{1+\tan x}\right) d x \\&=\frac{1}{8} \ln 2 \int_{0}^{\frac{\pi}{4}}(5+3 \cos (8 n x) )d x-I \\I &=\frac{\ln 2}{16} \int_{0}^{\frac{\pi}{4}}(5+3 \cos 8 n x) d x\\&=\frac{\ln 2}{16}\left[5 x+\frac{3}{8 n} \sin (8 n x)\right]_0^{\frac{\pi}{4} }\\ &=\frac{5 \pi}{64} \ln 2\end{aligned} \tag*{} $

My Question:

How can we deal with the odd one $$\displaystyle \int_{0}^{\frac{\pi}{4}}\left[\sin ^{6}(2 n +1)x+\cos ^{6}(2 n +1)x\right] \ln (1+\tan x) d x ?$$

Can you help?

Lai
  • 20,421
  • Dear friend, all definite integral $\int_a^bf(x)dx$ is constant. Have I misunderstood your question maybe? – Piquito Apr 26 '22 at 09:57
  • 2
    @Piquito. It means independent of $n$ – Claude Leibovici Apr 26 '22 at 10:03
  • Good job ! For the last question, it is not a constant but it seems to tend to the same value – Claude Leibovici Apr 26 '22 at 10:07
  • Sir, you are right. They are not a constant but very close. – Lai Apr 26 '22 at 10:08
  • @Lai A question is to find $\lim_{n\to \infty} \int_{0}^{\frac{\pi}{4}}\left[\sin ^{6}(2 n +1)x+\cos ^{6}(2 n +1)x\right] \ln (1+\tan x) d x$. – River Li Apr 26 '22 at 10:12
  • I am just thinking the same question. – Lai Apr 26 '22 at 10:40
  • You can solve this integral by using the identity $\int_{a}^bf(x)=\int_a^bf(a+b-x ) d x$ – Asher2211 Apr 26 '22 at 11:49
  • @Lai The limit is $(5/64)\pi \ln 2$ which is also equal to $\int_{0}^{\frac{\pi}{4}}\left[\sin ^{6}(2 n x)+\cos ^{6}(2 n x)\right] \ln (1+\tan x) d x$ ($n\ge 1$). – River Li Apr 26 '22 at 12:31
  • I agree with you. I shall give the solution later. – Lai Apr 26 '22 at 14:32
  • The existence of the limit is guaranteed by the Riemann-Lebesgue lemma – Ryszard Szwarc Apr 26 '22 at 15:27
  • @RiverLi. I wrote the asymptotics. Cheers :-) – Claude Leibovici Apr 28 '22 at 06:40
  • @ClaudeLeibovici Thanks. Sorry, you just give the result but do not give the reasoning. It is not easy to verify it e.g. by hand. For example, I used computer to get $\int_{0}^{\pi} \frac{x^3 (\pi-x)^3}{\sin^3 x}, dx=126\pi^2 \zeta (3) -\left(1395+\frac{279\pi^2}{2}\right)\zeta(5) +\frac{5715}{4}\zeta(7)$, however it is far from an answer, we need to give the reasoning, not just give the result. – River Li Apr 28 '22 at 06:57
  • @RiverLi. Are you sure that your comment is related to this question ? – Claude Leibovici Apr 28 '22 at 07:00
  • @ClaudeLeibovici Yes, just like my example, you used computer (right?) to give the asymptotics. I think we need the process how to obtain it (e.g. by hand) or it is easy to verify it by hand. – River Li Apr 28 '22 at 07:03
  • @RiverLi I used what I wrote in https://math.stackexchange.com/questions/4436446/integration-of-int-0-frac-pi4-sin6-2x-cos6-2x-cdot-ln-1-tan-x-d/4436501#4436501 before the edit. By the way, I "saw" (I am blind) the problem of $\int_{0}^{\pi} \frac{x^3 (\pi-x)^3}{\sin^3 x}, dx$ but I don't find it again. Could you give me the link ? Thanks & cheers – Claude Leibovici Apr 28 '22 at 07:09
  • @ClaudeLeibovici I think you should including the necessary details rather than just giving the result. That problem is in https://math.stackexchange.com/questions/4437032/tough-integral-int-0-pi-fracx2-pi-x2-sin2-x-dx-6-pi-zeta3. – River Li Apr 28 '22 at 07:13

3 Answers3

7

Similar to the even case, recognize $$\sin ^{6}mx+\cos ^{6}mx = \frac58+\frac38 \cos4mx $$ and rewrite the integral as follows \begin{align} I_{2n+1}=&\int_{0}^{\frac{\pi}{4}}\left[\sin ^{6}(2 n +1)x+\cos ^{6}(2 n +1)x\right] \ln (1+\tan x) d x \\ =&\> \frac58\int_{0}^{\frac{\pi}{4}}\ln \overset{\frac\pi4-x \to x}{(1+\tan x) } d x + \frac38\int_{0}^{\frac{\pi}{4}} \cos4(2n+1)x\ln\frac{\sqrt2\cos(\overset{\frac\pi4-x \to x}{\frac\pi4-x})}{\cos x}dx\\ =&\> \frac58\cdot \frac\pi8\ln2- \frac34\int_{0}^{\frac{\pi}{4}} \cos4(2n+1)x\ln \cos x\> \overset{ibp}{dx}\\ =&\> \frac{5\pi}{64}\ln2-\frac3{16(2n+1)} \int_{0}^{\frac{\pi}{4}}\frac{\sin 4(2n+1)x\sin x}{\cos x}dx\tag1 \end{align} Derive the integral below recursively \begin{align} K_m=&\int_{0}^{\frac{\pi}{4}}\frac{\sin 4m x\sin x}{\cos x}dx = K_{m-1}+\frac{(-1)^{m-1}}{2m-1}=-\frac\pi4+\sum_{j=0}^{m-1} \frac{(-1)^j}{2j+1}\\ \end{align} Then, evaluate $K_{2n+1}$ and plug into (1) to obtain $$I_{2n+1}= \frac{5\pi}{64}\ln2+\frac3{16(2n+1)}\bigg(\frac\pi4-\sum_{j=0}^{2n}\frac{(-1)^j}{2j+1} \bigg) $$ In contrast, the even case $I_{2n}= \frac{5\pi}{64}\ln2$ is much simpler.

Quanto
  • 97,352
3

Thanks to @Quanto for settling down the question by proving the odd one as:$$I_{2n+1}= \frac{5\pi}{64}\ln2+\frac3{16(2n+1)}\bigg(\frac\pi4-\sum_{j=0}^{2n}\frac{(-1)^j}{2j+1} \bigg) $$ As asked by @Claude Leibovici for the powers other than 6, I had generalised my result to even powers below: $$ I(m,n):=\int_{0}^{\frac{\pi}{4}}\left[\cos ^{2 m}(2 nx)+\sin ^{2 m}(2 n x)\right] \ln (1+\tan x) d x= \frac{\pi \ln 2}{4} \cdot \frac{(2 m-1) ! !}{(2 m) ! !} $$ Proof: Letting $x\mapsto \frac{\pi}{4}-x $ yields $$ \begin{aligned} I(m, n) &=\int_{0}^{\frac{\pi}{4}}\left[\sin ^{2 m}(2 x)+\cos ^{2 m}(2 x)\right) \ln \left(\frac{2}{1+\tan x}\right]d x \\ &=\ln 2 \int_{0}^{\frac{\pi}{4}}\left[\sin^{2m} (2 n x)+\cos ^{2 m}(2 n x) \right] d x-I(m, n)\\ I(m, n)&= \frac{\ln 2}{2} \int_{0}^{\frac{\pi}{4}}\left[\sin^{2m} (2n x)+\cos ^{2 m}(2nx)\right]d x\\& = \frac{\ln 2}{4} \int_{0}^{\frac{\pi}{2}}\left[\sin^{2m} (n x)+\cos ^{2 m}(nx)\right]d x\\&\stackrel{nx\mapsto x} {=}\frac{\ln 2}{2} \cdot \frac{1}{n} \int_{0}^{\frac{n \pi}{2}} \sin ^{2 m} x d x\\&= \frac{\ln 2}{2} \int_{0}^{\frac{\pi}{2}} \sin ^{2 m} x d x \end{aligned} $$ Using Wallis Formula, we can conclude that $$ \boxed{I(m, n)=\frac{\pi \ln 2}{4} \cdot \frac{(2 m-1) ! !}{(2 m) ! !}}, $$ which is independent of $n$.

Lai
  • 20,421
0

Since @Quanto provided a detailed and very good answer, I shall make the story short.

Working directly the problem of the difference between two consecutive terms $$I_{2n+1}-I_{2n}=-\frac{3 }{32 } \frac{1 }{2 n+1}\Phi \left(-1,1,\frac{4n+3}{2}\right)$$ where appears the Lerch transcendent function.

We can also write it as $$I_{2n+1}-I_{2n}=-\frac{3 }{64 }\frac{1 }{2 n+1} \left(H_{n+\frac{1}{4}}-H_{n-\frac{1}{4}}\right)$$ These are very small numbers. Expanded as series $$I_{2n+1}-I_{2n}=-\frac{3}{256 n^2}\Bigg[1-\frac{1}{n}+\frac{11}{16 n^2}-\frac{3}{8 n^3}+O\left(\frac{1}{n^4}\right) \Bigg]$$