Latest edit
- Thanks to @Quanto for settling down the question by proving the odd one as:$$I_{2n+1}= \frac{5\pi}{64}\ln2+\frac3{16(2n+1)}\bigg(\frac\pi4-\sum_{j=0}^{2n}\frac{(-1)^j}{2j+1} \bigg)$$ By our results for both odd and even multiples $n$ of $x$, we can conclude that
$$ \lim _{n \rightarrow \infty} \displaystyle \int_{0}^{\frac{\pi}{4}}\left[\sin ^{6}(nx)+\cos ^{6}(nx)\right] \ln (1+\tan x) d x =\frac{5 \pi\ln 2}{64} $$
- As asked by @Claude Leibovici for the powers other than 6, I had generalised my result to even powers below as an answer: $$ I(m,n):=\int_{0}^{\frac{\pi}{4}}\left[\cos ^{2 m}(2 nx)+\sin ^{2 m}(2 n x)\right] \ln (1+\tan x) d x= \frac{\pi \ln 2}{4} \cdot \frac{(2 m-1) ! !}{(2 m) ! !} $$
In order to evaluate the even case
$$\int_{0}^{\frac{\pi}{4}}\left[\sin^{6}(2 n x)+\cos^{6}(2 nx)\right] \ln (1+\tan x) d x $$ we first simplify $\displaystyle \begin{aligned}\sin ^{6}(2 n x)+\cos ^{6}(2 n x) =& {\left[\sin ^{2}(2 n x)+\cos ^{2}(2 n x)\right]\left[\sin ^{4}(2 n x)-\sin ^{2}(2 n x) \cos ^{2}(2 n x)\right) } \\&\left.+\cos ^{4}(2 n x)\right] \\=& 1-3 \sin ^{2}(2 n x) \cos ^{2}(2 n x) \\=& 1-\frac{3}{4} \sin ^{2}(4 n x) \\=& 1-\frac{3}{8}(1-\cos 8 n x) \\=& \frac{1}{8}(5+3 \cos (8nx))\end{aligned} \tag*{} $
To get rid of the natural logarithm, a simple substitution transforms the integral into
$\begin{aligned}I &=\frac{1}{8} \int_{0}^{\frac{\pi}{4}}(5+3 \cos (8 n x)) \ln (1+\tan x) d x \\& \stackrel{x\mapsto\frac{\pi}{4}-x}{=} \frac{1}{8} \int_{0}^{\frac{\pi}{4}}(5+3 \cos (8 n x)) \ln \left(1+\tan \left(\frac{\pi}{4}-x\right)\right) d x \\&=\frac{1}{8} \int_{0}^{\frac{\pi}{4}}(5+3 \cos (8 n x)) \ln \left(\frac{2}{1+\tan x}\right) d x \\&=\frac{1}{8} \ln 2 \int_{0}^{\frac{\pi}{4}}(5+3 \cos (8 n x) )d x-I \\I &=\frac{\ln 2}{16} \int_{0}^{\frac{\pi}{4}}(5+3 \cos 8 n x) d x\\&=\frac{\ln 2}{16}\left[5 x+\frac{3}{8 n} \sin (8 n x)\right]_0^{\frac{\pi}{4} }\\ &=\frac{5 \pi}{64} \ln 2\end{aligned} \tag*{} $
My Question:
How can we deal with the odd one $$\displaystyle \int_{0}^{\frac{\pi}{4}}\left[\sin ^{6}(2 n +1)x+\cos ^{6}(2 n +1)x\right] \ln (1+\tan x) d x ?$$
Can you help?