Lemma 1: If $X$ is separable, then there exists a compact metric space $(Y, d')$ and a map $T: X \to Y$ such that $T$ is a homeomorphism from $X$ onto $T(X)$.
Lemma 2: $(X, d)$ is compact if and only if $(\mathcal P, d_P)$ is compact.
By Lemma 1, there is a compact metric space $(Y, d')$ and a map $T:X \to Y$ such that $T$ is a homeomorphism from $X$ onto $T(X)$.
Let $(\mu)_n$ be a sequence in $\overline \Gamma$. Let $\nu_n := T_{\sharp} \mu_n \in \mathcal P(Y)$ for all $n$. Because $(Y, d')$ is compact, so is $(\mathcal P(Y), d'_{P})$ by Lemma 2. Hence there exist a subsequence $\lambda \in \mathbb N^\mathbb N$ and $\nu \in \mathcal P(Y)$ such that $\nu_{\lambda(n)} \to \nu$.
Let $Z := T(X)$. First, we prove that $\nu$ is concentrated on $Z$. Because $\Gamma$ is tight, so is $\overline \Gamma$. For each $m\ge 1$ there is a compact subset $K_m$ of $X$ such that
$$
\mu_n(K_m) \ge 1-1/m \quad \forall n.
$$
Clearly, $C_m :=T(K_m)$ is compact and thus closed in $Y$. So $C_m \in \mathcal B(Y)$. Because $T$ is injective,
$$
\nu_n (C_m) = \mu_n(K_m) \ge 1-1/m \quad \forall n.
$$
Also,
$$
\nu(C_m) \ge \limsup_n \nu_n (C_m) \ge 1-1/m.
$$
Then
$$
\nu \left ( \bigcup_{m=1}^\infty C_m \right ) \ge 1-1/m \quad \forall m.
$$
So
$$
\nu \left ( \bigcup_{m=1}^\infty C_m \right ) =1.
$$
We define a Borel probability measure $\mu$ on $X$ as follows.
$$
\mu (B) := \nu \left ( \bigcup_{m=1}^\infty \left [ T (B )\cap C_m \right ] \right ) \quad \forall B \in \mathcal B(X).
$$
- Notice that homeomorphism sends Borel set to Borel set. Also, $\mathcal B(Z) = \{ C \cap Z \mid C \in \mathcal B(Y)\}$.
- We have $T(B) \in \mathcal B(Z)$, so $\exists C \in \mathcal B(Y)$ such that $T(B) = C \cap Z$. Hence $T (B )\cap C_m = C \cap Z \cap C_m = C \cap C_m \in \mathcal B(Y)$.
- It follows that $\bigcup_{m=1}^\infty \left [ T (B )\cap C_m \right ] \in \mathcal B(Y)$ and thus $\mu$ is well-defined.
Next we prove that $\mu_n \to \mu$ in $d_P$. Because $X$ is separable, it suffices to show that $\mu_n \to \mu$ weakly. Let $B$ is closed in $X$. We have
$$
\begin{align}
\mu(B) &= \nu \left ( \bigcup_{m=1}^\infty \left [ T (B )\cap C_m \right ] \right ) \\
&\ge \limsup_n \nu_n \left ( \bigcup_{m=1}^\infty \left [ T (B )\cap C_m \right ] \right ) \\
&= \limsup_n \mu_n \left ( T^{-1} \left ( \bigcup_{m=1}^\infty \left [ T (B )\cap C_m \right ] \right ) \right )\\
&= \limsup_n \mu_n \left ( B \cap \bigcup_{m=1}^\infty K_m \right ) \\
&=\limsup_n \mu_n(B).
\end{align}
$$
This completes the proof.