2

We say that a linear isomorphism $T : \mathbb{R}^{n} \to \mathbb{R}^{n}$:

contracts volume, if $\text{det}(T) < 1$

preserves volume, if $\text{det}(T) = 1$

expand volume, if $\text{det}(T) > 1$

Thus, we say that the flow of the equation $x^{'} = Ax$ contracts, preserves, or expands volume in $\mathbb{R}^{n}$ if each exp(tA) contracts, preserves, or expands the volume of regions of finite volume in $\mathbb{R}^{n}$.

Show that the flow of the equation x' = Ax preserves the volume in $\mathbb{R}^{n}$ if and only if the trace of $A$ is zero.

I'm having trouble showing that $\text{det}(\text{exp}(tA)) = \text{exp}((trA)t)$

1 Answers1

1

For any $x\in\mathbb{R}^n$, the function $\phi(t; x)=\exp(t A)x$ solves the initial value problem $$\dot{y}=A y,\qquad y(0)=x$$.

Notice that $\phi(t;\cdot):\mathbb{R}^n\rightarrow\mathbb{R}^n$, given by $x\mapsto\phi(t; x)=\exp(tA)x$ is defines a family of diffeomorphisms such that

  1. $\phi(0;x)=x$
  2. $\phi(t+s;x)=\phi(t;\phi(s;x))$

Notice that if $D_0\subset\mathbb{R}^n$ is a region with finite volume. Then, as time $t$, the flow $\phi$ transform $D_0$ into $D(t):=\{\phi(t;x):x\in D_0\}=:\phi(t;D_0)$.

Recall the change of variable formula for integration in $\mathbb{R}^n$: $$\int_{G(U)}f(y)\,dx=\int_U f(G(x))|J_G(x)|\,dx$$ where $G$ is a diffeomorphism, and $J_G$ is the determinant of the Jacobian matrix, that is $$J_G(x)=\operatorname{det}(G'(x))$$

Then, the volume $v(t)$ of $D(t)$ is calculated by $$\begin{align} v(t)=\int_{D(t)}\,dy&=\int_{\phi(t;D_0)}\,dy=\int_{D_0}\left|\operatorname{det}\left(\frac{\partial}{\partial y}\phi(t;y)\right)\right|\,dy\\ &=\int_{D_0}\operatorname{det}\left(\frac{\partial}{\partial y}\phi(t;y)\right)\,dy\\ &=\int_{D_0}\operatorname{det}\big(\exp(t A)\big)\,dy=\operatorname{det}\big(\exp(t A)\big) v(0) \end{align}$$ where the absolute signs can be dropped as $\phi(0;x)=x$ and the $\phi$'s are diffeomorphisms. From this, it follows that $$\begin{align} v'(t)&=v(0)\frac{d}{dt}\operatorname{det}\big(\exp(t A)\big)\tag{1}\label{one} \end{align}$$

The posting I quoted in my comment shows how to calculate the derivative of the determinant function $\operatorname{det}:\mathbb{R}^{n^2}\rightarrow\mathbb{R}$ (see Lemma there), and uses it to calculate the derivative of $W(t; y):=\operatorname{det}\Big(\frac{\partial}{\partial y}\phi(t; y)\Big)$ with respect to $t$, where $\phi$ is a solution to the system $$\dot{y}=f(t, y),\qquad y(0)=x$$ and shows that $$\begin{align} \dot{W}(t; y)=W(t; y)(\nabla_y \cdot f)(t;\phi(t; y))\tag{2}\label{two} \end{align}$$ In this case of your problem, $f(t; y)=Ay$ and so, $$\nabla_y\cdot f=(\partial_{y_1},\ldots,\partial_{y_n})\cdot Ay=\operatorname{trace}(A)$$ Consequently $$\frac{d}{dt}\operatorname{det}\big(\exp(t A)\big)=\Big(\operatorname{det}\big(\exp(t A)\big)\Big) \operatorname{trace}(A)$$

Thus, \eqref{one} reduces to $$v'(t)=v(t)\operatorname{trace}(A)$$ the conclusion to the problems follows now immediately: $v'(t)=0$ iff $\operatorname{trace}(A)=0$. (Notice that $v(t)\neq0$ (why?))


One can avoid the derivation of the formula \eqref{two} and use Jordan's canononical decomposition $A=P^{-1}J P$, where $J$ is a canonical upper triangular matrix containing eigenvalues along the diagonal. Then $$\phi(t;x)=\exp(tA)x=P^{-1}\exp(tJ)Px$$ and so, $$\operatorname{det}\left(\frac{\partial}{\partial x}\phi(t; x)\right)=\operatorname{det}\left(\exp(tJ)\right)$$ It is easy to check that $$\operatorname{det}\big(\exp(tJ)\big)=\exp\left(t\sum_j\lambda_j\right)=\exp(t\operatorname{trace}(A))$$ where $\lambda_j$ are the eigenvalues (including multiplicity) of $A$.

Mittens
  • 39,145