-1

Problem :

Let $a$, $b$ and $c$ be positive numbers. Prove that: $$\frac{a^3}{2a^2+b^2}+\frac{b^3}{2b^2+c^2}+\frac{c^3}{2c^2+a^2}\geq\frac{a+b+c}{3}.$$

My strategy :

I introduce the function :

$$f\left(x\right)=\frac{x}{2+\frac{p^{2}\left(x+u\right)^{2}}{\left(x+k\right)^{2}}}$$

And :

$$b=\frac{a\left(a+u\right)p}{a+k},c=\frac{bp\left(b+u\right)}{b+k}$$

And :

Now the problem is :

$$f\left(a\right)+f\left(b\right)+\frac{c^{3}}{2c^{2}+a^{2}}-\frac{\left(a+b+c\right)}{3}\geq 0$$

Fact 1 :

It seems we can use directly Jensen's inequality as $f(x)$ is convex for $u\geq k>0$ and $p>0$ and $x>0$.

Now remains to show that it is positive or after a bit of algebra and using again Jensen's inequality .

$$g(a,u,k)=\frac{c^{3}}{2c^{2}+a^{2}}+2f\left(\frac{\left(a+b\right)}{2}\right)-\frac{\left(a+b+c\right)}{3}\geq 0 $$ Wich is not hard again .

By not hard I mean using Buffalo's way all the coefficient are positives (I use Geogebra) using rational number wich is sufficient to show the strategy .

Replacing by the differents constraints we have and $p=1$:

$$g(x,y+x+z,y+x)=z² x (8x² + 3x z + 8x y + z y + 2y²) (6144x⁹ + 6528x⁸ z + 27648x⁸ y + 3712x⁷ z² + 24192x⁷ z y + 55296x⁷ y² + 1920x⁶ z³ + 11488x⁶ z² y + 39072x⁶ z y² + 64512x⁶ y³ + 678x⁵ z⁴ + 5244x⁵ z³ y + 15360x⁵ z² y² + 35904x⁵ z y³ + 48384x⁵ y⁴ + 99x⁴ z⁵ + 1549x⁴ z⁴ y + 6144x⁴ z³ y² + 11536x⁴ z² y³ + 20520x⁴ z y⁴ + 24192x⁴ y⁵ + 174x³ z⁵ y + 1461x³ z⁴ y² + 3939x³ z³ y³ + 5272x³ z² y⁴ + 7464x³ z y⁵ + 8064x³ y⁶ + 119x² z⁵ y² + 700x² z⁴ y³ + 1449x² z³ y⁴ + 1470x² z² y⁵ + 1686x² z y⁶ + 1728x² y⁷ + 36x z⁵ y³ + 168x z⁴ y⁴ + 288x z³ y⁵ + 232x z² y⁶ + 216x z y⁷ + 216x y⁸ + 4z⁵ y⁴ + 16z⁴ y⁵ + 24z³ y⁶ + 16z² y⁷ + 12z y⁸ + 12y⁹) / (3 (2x + y) (4x² + x z + 4x y + y²) (192x⁴ + 112x³ z + 384x³ y + 27x² z² + 144x² z y + 288x² y² + 20x z² y + 60x z y² + 96x y³ + 4z² y² + 8z y³ + 12y⁴) (192x⁶ + 352x⁵ z + 576x⁵ y + 300x⁴ z² + 832x⁴ z y + 720x⁴ y² + 120x³ z³ + 540x³ z² y + 784x³ z y² + 480x³ y³ + 18x² z⁴ + 148x² z³ y + 363x² z² y² + 368x² z y³ + 180x² y⁴ + 12x z⁴ y + 60x z³ y² + 108x z² y³ + 86x z y⁴ + 36x y⁵ + 2z⁴ y² + 8z³ y³ + 12z² y⁴ + 8z y⁵ + 3y⁶))$$

Where $x=a$ and $k=x+y$ and $u=x+y+z$. The same approach works with $k\leq a \leq u$ and $k\leq u \leq a $

Edit 08/05/2022 :

Using :

$$b=\frac{a\left(a+u\right)p}{a+k},c=\frac{bp\left(v+u\right)}{v+k}$$

And following the same path we have taking Buffalo's way in this case Inequality $\sum\limits_{cyc}\frac{a^3}{13a^2+5b^2}\geq\frac{a+b+c}{18}$ :

$$h(1,1+x+y+z,1+x+y,1+x)=(2304x¹³ z + 23616x¹² y z + 7056x¹² z² + 72576x¹² z + 107136x¹¹ y² z + 67560x¹¹ y z² + 652032x¹¹ y z + 6000x¹¹ z³ + 246000x¹¹ z² + 930816x¹¹ z + 284832x¹⁰ y³ z + 280356x¹⁰ y² z² + 2597184x¹⁰ y² z + 60992x¹⁰ y z³ + 1997856x¹⁰ y z² + 7417152x¹⁰ y z + 2704x¹⁰ z⁴ + 319888x¹⁰ z³ + 3172224x¹⁰ z² + 6724224x¹⁰ z + 494064x⁹ y⁴ z + 668334x⁹ y³ z² + 6051456x⁹ y³ z + 248132x⁹ y² z³ + 7097820x⁹ y² z² + 26078976x⁹ y² z + 32388x⁹ y z⁴ + 2394408x⁹ y z³ + 22505424x⁹ y z² + 47508480x⁹ y z + 1372x⁹ z⁵ + 269912x⁹ z⁴ + 4502176x⁹ z³ + 21966240x⁹ z² + 31207680x⁹ z + 587844x⁸ y⁵ z + 1017642x⁸ y⁴ z² + 9154008x⁸ y⁴ z + 551028x⁸ y³ z³ + 14523852x⁸ y³ z² + 53257536x⁸ y³ z + 129716x⁸ y² z⁴ + 7669964x⁸ y² z³ + 69551484x⁸ y² z² + 146876544x⁸ y² z + 14360x⁸ y z⁵ + 1812792x⁸ y z⁴ + 28509176x⁸ y z³ + 136484256x⁸ y z² + 194316480x⁸ y z + 1196x⁸ z⁶ + 167596x⁸ z⁵ + 4103560x⁸ z⁴ + 30746720x⁸ z³ + 94671120x⁸ z² + 99533952x⁸ z + 489960x⁷ y⁶ z + 1036836x⁷ y⁵ z² + 9422352x⁷ y⁵ z + 749550x⁷ y⁴ z³ + 18937020x⁷ y⁴ z² + 69924384x⁷ y⁴ z + 262501x⁷ y³ z⁴ + 13828146x⁷ y³ z³ + 122895582x⁷ y³ z² + 260894592x⁷ y³ z + 48983x⁷ y² z⁵ + 5094138x⁷ y² z⁴ + 77310956x⁷ y² z³ + 365831892x⁷ y² z² + 523380096x⁷ y² z + 6920x⁷ y z⁶ + 965318x⁷ y z⁵ + 22666052x⁷ y z⁴ + 167291672x⁷ y z³ + 511618344x⁷ y z² + 540649728x⁷ y z + 580x⁷ z⁷ + 78556x⁷ z⁶ + 2670844x⁷ z⁵ + 27055560x⁷ z⁴ + 123971888x⁷ z³ + 273260208x⁷ z² + 226303488x⁷ z + 286236x⁶ y⁷ z + 717120x⁶ y⁶ z² + 6716088x⁶ y⁶ z + 654090x⁶ y⁵ z³ + 16408836x⁶ y⁵ z² + 61658604x⁶ y⁵ z + 307879x⁶ y⁴ z⁴ + 15468966x⁶ y⁴ z³ + 136874838x⁶ y⁴ z² + 293766840x⁶ y⁴ z + 81807x⁶ y³ z⁵ + 7852582x⁶ y³ z⁴ + 117420318x⁶ y³ z³ + 553384464x⁶ y³ z² + 798072480x⁶ y³ z + 15799x⁶ y² z⁶ + 2282992x⁶ y² z⁵ + 52614078x⁶ y² z⁴ + 385593924x⁶ y² z³ + 1175908752x⁶ y² z² + 1251208512x⁶ y² z + 2280x⁶ y z⁷ + 371498x⁶ y z⁶ + 12503806x⁶ y z⁵ + 126077456x⁶ y z⁴ + 576011592x⁶ y z³ + 1267996416x⁶ y z² + 1057070016x⁶ y z + 100x⁶ z⁸ + 26000x⁶ z⁷ + 1290726x⁶ z⁶ + 16530100x⁶ z⁵ + 99593192x⁶ z⁴ + 322437456x⁶ z³ + 548623200x⁶ z² + 373500288x⁶ z + 114912x⁵ y⁸ z + 332886x⁵ y⁷ z² + 3302064x⁵ y⁷ z + 368352x⁵ y⁶ z³ + 9540996x⁵ y⁶ z² + 36993168x⁵ y⁶ z + 218935x⁵ y⁵ z⁴ + 11122950x⁵ y⁵ z³ + 99764766x⁵ y⁵ z² + 218025216x⁵ y⁵ z + 75773x⁵ y⁴ z⁵ + 7272762x⁵ y⁴ z⁴ + 109496940x⁵ y⁴ z³ + 518395980x⁵ y⁴ z² + 756538560x⁵ y⁴ z + 18371x⁵ y³ z⁶ + 2882056x⁵ y³ z⁵ + 66749156x⁵ y³ z⁴ + 489993840x⁵ y³ z³ + 1496720400x⁵ y³ z² + 1606973184x⁵ y³ z + 3505x⁵ y² z⁷ + 707234x⁵ y² z⁶ + 24082810x⁵ y² z⁵ + 243463448x⁵ y² z⁴ + 1113468000x⁵ y² z³ + 2453860512x⁵ y² z² + 2061635328x⁵ y² z + 300x⁵ y z⁸ + 98944x⁵ y z⁷ + 4975689x⁵ y z⁶ + 64171304x⁵ y z⁵ + 388077504x⁵ y z⁴ + 1258735584x⁵ y z³ + 2145025632x⁵ y z² + 1471113216x⁵ y z + 5912x⁵ z⁸ + 464105x⁵ z⁷ + 7269410x⁵ z⁶ + 53855448x⁵ z⁵ + 226936192x⁵ z⁴ + 563958720x⁵ z³ + 778494912x⁵ z² + 449344512x⁵ z + 30204x⁴ y⁹ z + 99354x⁴ y⁸ z² + 1091016x⁴ y⁸ z + 129592x⁴ y⁷ z³ + 3659220x⁴ y⁷ z² + 14941656x⁴ y⁷ z + 93237x⁴ y⁶ z⁴ + 5127686x⁴ y⁶ z³ + 47744934x⁴ y⁶ z² + 107286480x⁴ y⁶ z + 39759x⁴ y⁵ z⁵ + 4142666x⁴ y⁵ z⁴ + 64503714x⁴ y⁵ z³ + 310075320x⁴ y⁵ z² + 460222560x⁴ y⁵ z + 11524x⁴ y⁴ z⁶ + 2099874x⁴ y⁴ z⁵ + 50290558x⁴ y⁴ z⁴ + 373661740x⁴ y⁴ z³ + 1149362280x⁴ y⁴ z² + 1248545088x⁴ y⁴ z + 2625x⁴ y³ z⁷ + 694066x⁴ y³ z⁶ + 24598222x⁴ y³ z⁵ + 251535744x⁴ y³ z⁴ + 1157003600x⁴ y³ z³ + 2559954048x⁴ y³ z² + 2170691712x⁴ y³ z + 325x⁴ y² z⁸ + 146372x⁴ y² z⁷ + 7679819x⁴ y² z⁶ + 100373076x⁴ y² z⁵ + 611277472x⁴ y² z⁴ + 1990878144x⁴ y² z³ + 3403224480x⁴ y² z² + 2352989952x⁴ y² z + 17816x⁴ y z⁸ + 1432847x⁴ y z⁷ + 22759252x⁴ y z⁶ + 170328888x⁴ y z⁵ + 722467040x⁴ y z⁴ + 1802806432x⁴ y z³ + 2496451968x⁴ y z² + 1452049920x⁴ y z + 980x⁴ z⁹ + 124093x⁴ z⁸ + 2301206x⁴ z⁷ + 20167372x⁴ z⁶ + 103625552x⁴ z⁵ + 334059360x⁴ z⁴ + 672075968x⁴ z³ + 779521920x⁴ z² + 390435840x⁴ z + 4680x³ y¹⁰ z + 17232x³ y⁹ z² + 228528x³ y⁹ z + 25918x³ y⁸ z³ + 879492x³ y⁸ z² + 3915216x³ y⁸ z + 21892x³ y⁷ z⁴ + 1454616x³ y⁷ z³ + 14598084x³ y⁷ z² + 34228224x³ y⁷ z + 11068x³ y⁶ z⁵ + 1414412x³ y⁶ z⁴ + 23707652x³ y⁶ z³ + 117449976x³ y⁶ z² + 178536960x³ y⁶ z + 3707x³ y⁵ z⁶ + 883074x³ y⁵ z⁵ + 22807146x³ y⁵ z⁴ + 173915344x³ y⁵ z³ + 542433360x³ y⁵ z² + 598316544x³ y⁵ z + 955x³ y⁴ z⁷ + 370508x³ y⁴ z⁶ + 14269816x³ y⁴ z⁵ + 149336500x³ y⁴ z⁴ + 694958640x³ y⁴ z³ + 1549246944x³ y⁴ z² + 1328334336x³ y⁴ z + 150x³ y³ z⁸ + 105148x³ y³ z⁷ + 6032332x³ y³ z⁶ + 80606448x³ y³ z⁵ + 496452560x³ y³ z⁴ + 1628139776x³ y³ z³ + 2797120704x³ y³ z² + 1951506432x³ y³ z + 19574x³ y² z⁸ + 1702720x³ y² z⁷ + 27598360x³ y² z⁶ + 209152704x³ y² z⁵ + 894463584x³ y² z⁴ + 2244279232x³ y² z³ + 3120739968x³ y² z² + 1829910528x³ y² z + 2210x³ y z⁹ + 296090x³ y z⁸ + 5579664x³ y z⁷ + 49565152x³ y z⁶ + 257446688x³ y z⁵ + 836379424x³ y z⁴ + 1691629824x³ y z³ + 1970095872x³ y z² + 994406400x³ y z + 100x³ z¹⁰ + 24258x³ z⁹ + 515084x³ z⁸ + 5174352x³ z⁷ + 31186016x³ z⁶ + 122367104x³ z⁵ + 319249472x³ z⁴ + 539479808x³ z³ + 539543040x³ z² + 238768128x³ z + 324x² y¹¹ z + 1320x² y¹⁰ z² + 26856x² y¹⁰ z + 2250x² y⁹ z³ + 118140x² y⁹ z² + 615564x² y⁹ z + 2180x² y⁸ z⁴ + 228544x² y⁸ z³ + 2660592x² y⁸ z² + 6673752x² y⁸ z + 1270x² y⁷ z⁵ + 263544x² y⁷ z⁴ + 5131396x² y⁷ z³ + 26824512x² y⁷ z² + 42209856x² y⁷ z + 479x² y⁶ z⁶ + 198286x² y⁶ z⁵ + 5975010x² y⁶ z⁴ + 47754616x² y⁶ z³ + 152511744x² y⁶ z² + 171690624x² y⁶ z + 135x² y⁵ z⁷ + 102090x² y⁵ z⁶ + 4637772x² y⁵ z⁵ + 50539064x² y⁵ z⁴ + 239869840x² y⁵ z³ + 541301376x² y⁵ z² + 470510208x² y⁵ z + 25x² y⁴ z⁸ + 36716x² y⁴ z⁷ + 2516704x² y⁴ z⁶ + 34836160x² y⁴ z⁵ + 218240760x² y⁴ z⁴ + 723315040x² y⁴ z³ + 1251909120x² y⁴ z² + 882517248x² y⁴ z + 9268x² y³ z⁸ + 965846x² y³ z⁷ + 16126672x² y³ z⁶ + 124192960x² y³ z⁵ + 536687040x² y³ z⁴ + 1356338368x² y³ z³ + 1896305664x² y³ z² + 1121624064x² y³ z + 1600x² y² z⁹ + 255608x² y² z⁸ + 4924692x² y² z⁷ + 44411376x² y² z⁶ + 233376480x² y² z⁵ + 764661728x² y² z⁴ + 1556063872x² y² z³ + 1820780544x² y² z² + 926318592x² y² z + 150x² y z¹⁰ + 42512x² y z⁹ + 912016x² y z⁸ + 9272728x² y z⁷ + 56584736x² y z⁶ + 224427712x² y z⁵ + 590348160x² y z⁴ + 1003555072x² y z³ + 1008319488x² y z² + 449620992x² y z + 3356x² z¹⁰ + 78624x² z⁹ + 875344x² z⁸ + 5990320x² z⁷ + 27506304x² z⁶ + 87395584x² z⁵ + 191718528x² z⁴ + 279523840x² z³ + 245870592x² z² + 97523712x² z + 1296x y¹¹ z + 6576x y¹⁰ z² + 49248x y¹⁰ z + 14928x y⁹ z³ + 248088x y⁹ z² + 699840x y⁹ z + 20360x y⁸ z⁴ + 569032x y⁸ z³ + 3281904x y⁸ z² + 5443200x y⁸ z + 18300x y⁷ z⁵ + 799428x y⁷ z⁴ + 6954880x y⁷ z³ + 23098752x y⁷ z² + 26749440x y⁷ z + 11356x y⁶ z⁶ + 762224x y⁶ z⁵ + 8911672x y⁶ z⁴ + 43668352x y⁶ z³ + 100429056x y⁶ z² + 88833024x y⁶ z + 4996x y⁵ z⁷ + 519220x y⁵ z⁶ + 7609488x y⁵ z⁵ + 48909392x y⁵ z⁴ + 164641792x y⁵ z³ + 288029952x y⁵ z² + 205535232x y⁵ z + 1598x y⁴ z⁸ + 258376x y⁴ z⁷ + 4510840x y⁴ z⁶ + 35485440x y⁴ z⁵ + 155430240x y⁴ z⁴ + 396557056x y⁴ z³ + 558383616x y⁴ z² + 333434880x y⁴ z + 370x y³ z⁹ + 93934x y³ z⁸ + 1867168x y³ z⁷ + 17134880x y³ z⁶ + 91211840x y³ z⁵ + 301739200x y³ z⁴ + 618440704x y³ z³ + 727676928x y³ z² + 373248000x y³ z + 50x y² z¹⁰ + 24186x y² z⁹ + 525252x y² z⁸ + 5401664x y² z⁷ + 33361280x y² z⁶ + 133743360x y² z⁵ + 354790016x y² z⁴ + 606976000x y² z³ + 612900864x y² z² + 275374080x y² z + 4041x y z¹⁰ + 92304x y z⁹ + 1024936x y z⁸ + 7068992x y z⁷ + 32816192x y z⁶ + 105355008x y z⁵ + 233051904x y z⁴ + 341929984x y z³ + 302241792x y z² + 120766464x y z + 345x z¹¹ + 7882x z¹⁰ + 90824x z⁹ + 674768x z⁸ + 3494528x z⁷ + 12981120x z⁶ + 34727936x z⁵ + 65841664x z⁴ + 84527104x z³ + 66416640x z² + 23887872x z + 1296y¹¹ z + 7872y¹⁰ z² + 28512y¹⁰ z + 22152y⁹ z³ + 157440y⁹ z² + 285120y⁹ z + 38576y⁸ z⁴ + 398736y⁸ z³ + 1416960y⁸ z² + 1710720y⁸ z + 46124y⁷ z⁵ + 617216y⁷ z⁴ + 3189888y⁷ z³ + 7557120y⁷ z² + 6842880y⁷ z + 39836y⁶ z⁶ + 645736y⁶ z⁵ + 4320512y⁶ z⁴ + 14886144y⁶ z³ + 26449920y⁶ z² + 19160064y⁶ z + 25502y⁵ z⁷ + 478032y⁵ z⁶ + 3874416y⁵ z⁵ + 17282048y⁵ z⁴ + 44658432y⁵ z³ + 63479808y⁵ z² + 38320128y⁵ z + 12272y⁴ z⁸ + 255020y⁴ z⁷ + 2390160y⁴ z⁶ + 12914720y⁴ z⁵ + 43205120y⁴ z⁴ + 89316864y⁴ z³ + 105799680y⁴ z² + 54743040y⁴ z + 4466y³ z⁹ + 98176y³ z⁸ + 1020080y³ z⁷ + 6373760y³ z⁶ + 25829440y³ z⁵ + 69128192y³ z⁴ + 119089152y³ z³ + 120913920y³ z² + 54743040y³ z + 1219y² z¹⁰ + 26796y² z⁹ + 294528y² z⁸ + 2040160y² z⁷ + 9560640y² z⁶ + 30995328y² z⁵ + 69128192y² z⁴ + 102076416y² z³ + 90685440y² z² + 36495360y² z + 235y z¹¹ + 4876y z¹⁰ + 53592y z⁹ + 392704y z⁸ + 2040160y z⁷ + 7648512y z⁶ + 20663552y z⁵ + 39501824y z⁴ + 51038208y z³ + 40304640y z² + 14598144y z + 25z¹² + 470z¹¹ + 4876z¹⁰ + 35728z⁹ + 196352z⁸ + 816064z⁷ + 2549504z⁶ + 5903872z⁵ + 9875456z⁴ + 11341824z³ + 8060928z² + 2654208z)$$

Where I only put the numerator and with the function $h(a,u,k,v)$

Question : Is my strategy correct ? If not can someone point out my mistakes ?

Thanks in advance .

  • 1
    Can you explain why $g$ is introduced but then doesn't seem to appear again? – housed_off_space May 03 '22 at 10:49
  • 2
    @housed_off_space It appears with $f(d)c/d$ – Miss and Mister cassoulet char May 03 '22 at 10:55
  • 2
    Ah, I see. $d$ is any solution to $g(d) = 0$. And you have shown that the change of variables you do are WLOG? – housed_off_space May 03 '22 at 10:58
  • 3
    @housed_off_space Yes it's a partial answer because we loose some generality .I add it in a edit ? – Miss and Mister cassoulet char May 03 '22 at 11:07
  • 2
    This is a Vasile Cirtoaje inequality from 2005 (hence it's difficult (-; ). Michael Rozenberg has provided a proof similar to yours here (scroll down): https://artofproblemsolving.com/community/c6h22937p427220 By the way, Vasc himself says in the linked post "if you want inequalities which are almost impossible to solve, what you say about these" - that tells a lot, doesn't it? – Andreas May 06 '22 at 09:18
  • 2
    Dear Andreas the proof is not similar because it's impossible in the Michael's mind to use Jensen's inequality on this kind of question .Moreover this partial proof works also with the case $k=1.6$ . Anyway thanks for your reply . Ps : we have also the general case maybe . :-) – Miss and Mister cassoulet char May 07 '22 at 11:16
  • 1
    I'm sorry for all the downvotes; people clearly think this is a troll question...anyway I've upvoted. And good luck finding someone to answer –  May 11 '22 at 08:47
  • Also, maybe Math Overflow is a better place for a question like this –  May 11 '22 at 08:49

1 Answers1

-1

I think your strategy is correct. Also, I expanded the expressions after substitution using Python and compared it to your expansion, and the two lists are equal, so at least you didn't make a typo.

Your reasoning overall seems sound to me.