In the arXiv preprint [1] below, the following series expansions were established.
When $r\ge0$, the series expansions
\begin{equation}\label{recip-sin-ser-closed-eq}
\biggl(\frac{\sin z}z\biggr)^r=1+\sum_{q=1}^{\infty}(-1)^q\Biggl[\sum_{k=1}^{2q}\frac{(-r)_k}{k!} \sum_{j=1}^k(-1)^j\binom{k}{j} \frac{T(2q+j,j)}{\binom{2q+j}{j}}\Biggr]\frac{(2z)^{2q}}{(2q)!}
\end{equation}
and
\begin{equation}\label{recip-sin-stirl-closed-eq}
\biggl(\frac{\sin z}z\biggr)^r=1+\sum_{q=1}^{\infty}(-1)^q\Biggl[\sum_{k=1}^{2q}\frac{(-r)_k}{k!} \sum_{j=1}^k(-1)^j\binom{k}{j} \sum_{m=0}^{2q}(-1)^{m}\binom{2q}{m} \biggl(\frac{j}{2}\biggr)^{m} \frac{S(2q+j-m,j)} {\binom{2q+j-m}{j}}\Biggr]\frac{(2z)^{2q}}{(2q)!}
\end{equation}
are convergent in $z\in\mathbb{C}$, where $T(n,k)$ and $S(n,k)$ denote the central factorial numbers and the Stirling numbers of the second kinds, and the rising factorial $(r)_k$ is defined by
\begin{equation*}%\label{rising-Factorial}
(r)_k=\prod_{\ell=0}^{k-1}(r+\ell)
= \begin{cases} r(r+1)\dotsm(r+k-1), & k\ge1;\\ 1, & k=0. \end{cases} \end{equation*}
When $r<0$, the above two series expansions are convergent in $|z|<\pi$.
However, by virtue of these two series expansions applied to $r=\frac25$, it is very difficult to verify that the function $1-\bigl(\frac{\sin z}z\bigr)^{2/5}$ has a Maclaurin expansion with all coefficients positive.
Reference
- F. Qi and P. Taylor, Several series expansions for real powers and several formulas for partial Bell polynomials of sinc and sinhc functions in terms of central factorial and Stirling numbers of second kind, arXiv (2022), available online at https://arxiv.org/abs/2204.05612v4 or https://doi.org/10.48550/arXiv.2204.05612.
$$ and $\Gamma(-a)$ is negative if $0<a<1$.
– Gary May 08 '22 at 12:30