In my post, I had found $$\int_{0}^{\infty} \frac{\ln ^{2} x}{(1+x)^{2}} d x =\frac{\pi^{2}}{3}.$$
Using similar technique, we can evaluate the general integral
$$I=\int_{0}^{\infty} \frac{\ln ^{2} x}{(1+x)^{m}} d x,$$ where $m \in N$ using the related integral $$ \begin{aligned} J(a) =&\int_{0}^{\infty} \frac{x^{a}}{(1+x)^{m}} d x \\=& \int_{0}^{\infty} \frac{x^{(a+1)-1}}{(1+x)^{(a+1)+(m-a-1)} }d x \\ =& B(a+1, m-a-1) \\ =& \frac{\Gamma(a+1) \Gamma(m-a)}{\Gamma(m)} \\ =& \frac{1}{(m-1) !}\Gamma(a+1) \Gamma(m-a) \end{aligned} $$
$$ \begin{aligned} \frac{\partial^{2}}{\partial a^{2}}J(a)=\frac{1}{(m-1) !}\left[\Gamma^{\prime \prime}(a+1)\Gamma(m-a)-2 \Gamma^{\prime}(a+1) \Gamma^{\prime}(m-a)+\Gamma^{\prime \prime}(m-a)\right] \end{aligned} $$
Back to our integral, $$ \begin{aligned} I&=\left.\frac{\partial^{2}}{\partial a^{2}} J(a)\right|_ {a=0} \\&=\frac{1}{(m-1) !}\left[\left(\Gamma^{\prime \prime}(1) \Gamma(m)-2 \Gamma ^{\prime} {(1)}\Gamma^{\prime} (m)\right.+\Gamma^{\prime \prime}(m)\right] \\ &=\frac{1}{(m-1) !}\left[\left(\gamma ^{2}+\frac{\pi}{6}\right)(m-1)! +2 \gamma \Gamma^{\prime}(m)+\Gamma^{\prime \prime}(m)\right] \end{aligned} $$ My Question
How to find the formula for $\Gamma^{\prime}(m) \textrm{ and }\Gamma^{\prime \prime}(m)?$