$$\lim_{h\to 0} \frac{4^{x+h}+4^{x-h}-4^{x+\frac12}}{h^2}=?$$
I evaluated the limit by using the Hopital rule,$$\lim_{h\to 0} \frac{4^{x+h}+4^{x-h}-4^{x+\frac12}}{h^2}=4^x\lim_{h\to0}\frac{4^h+4^{-h}-2}{h^2}=4^x\lim_{h\to0}\frac{\ln(4)(4^h-4^{-h})}{2h}=4^x\lim_{h\to0}\frac{(\ln4)^2(4^h+4^{-h})}{2}=4^x\times4(\ln2)^2=4^{x+1}(\ln2)^2$$ I want to learn other ideas to solving this problem, so can you please evaluate the limit with other approaches?