Here is another approach
Define
$$
b_m=\sum_{k=2^m+1}^{2^{m+1}}\frac1{a_k}\tag1
$$
By assumption, we have the convergence of
$$
\sum_{m=0}^\infty b_m=\sum_{k=2}^\infty\frac1{a_k}\tag2
$$
Next,
$$
\begin{align}
\sum_{k=2^m+1}^{2^{m+1}}a_kk^p\overbrace{\sum_{k=2^m+1}^{2^{m+1}}\frac1{a_k}}^{b_m}
&\ge\left(\sum_{k=2^m+1}^{2^{m+1}}k^{p/2}\right)^2\tag{3a}\\
&\ge\frac1{(p/2+1)^2}\left(\left(2^{m+1}\right)^{p/2+1}-\left(2^m\right)^{p/2+1}\right)^2\tag{3b}\\
&=\underbrace{\left(\frac{2^{p/2+1}-1}{p/2+1}\right)^2}_{c_p}\,\,2^{m(p+2)}\tag{3c}
\end{align}
$$
Explanation:
$\text{(3a)}$: Cauchy-Schwarz
$\text{(3b)}$: underestimating a sum with an integral
$\text{(3c)}$: factor out $c_p$
Thus,
$$
\begin{align}
\sum_{k=1}^{2^{m+1}}a_kk^p
&\ge\sum_{k=2^m+1}^{2^{m+1}}a_kk^p\tag{4a}\\
&\ge\frac{c_p}{b_m}2^{m(p+2)}\tag{4b}
\end{align}
$$
Explanation:
$\text{(4a)}$: sum over fewer terms is smaller
$\text{(4b)}$: apply $(3)$
Therefore,
$$
\begin{align}
\sum_{n=1}^\infty\frac{n^{p+1}}{\sum\limits_{k=1}^na_kk^p}
&=\frac1{a_1}+\sum_{m=0}^\infty\sum_{n=2^m+1}^{2^{m+1}}\frac{n^{p+1}}{\sum\limits_{k=1}^na_kk^p}\tag{5a}\\
&\le\frac1{a_1}+\frac{2^{p+1}}{a_1+a_22^p}+\sum_{m=1}^\infty2^m\frac{2^{(m+1)(p+1)}}{\sum\limits_{k=1}^{2^m}a_kk^p}\tag{5b}\\
&\le\frac1{a_1}+\frac{2^{p+1}}{a_1+a_22^p}+\frac12\sum_{m=1}^\infty\frac{2^{(m+1)(p+2)}}{\frac{c_p}{b_{m-1}}2^{(m-1)(p+2)}}\tag{5c}\\[6pt]
&=\frac1{a_1}+\frac{2^{p+1}}{a_1+a_22^p}+\frac{2^{2p+3}}{c_p}\sum_{m=1}^\infty b_{m-1}\tag{5d}\\[6pt]
&=\frac1{a_1}+\frac{2^{p+1}}{a_1+a_22^p}+\frac{2^{2p+3}}{c_p}\sum_{k=2}^\infty\frac1{a_k}\tag{5e}
\end{align}
$$
Explanation:
$\text{(5a)}$: break the sum into the intervals $\left[2^m+1,2^{m+1}\right]$
$\text{(5b)}$: break out the $m=0$ ($n=2$) term
$\phantom{\text{(5b):}}$ for each $m$, there are $2^m$ terms in the sum
$\phantom{\text{(5b):}}$ for each term, $2^m\lt n\le2^{m+1}$
$\text{(5c)}$: apply $(4)$
$\text{(5d)}$: simplify
$\text{(5e)}$: apply $(2)$