4

\begin{align*} \int\frac{\mathrm{d}x}{\cos(x) - 3\sin(x)} \end{align*}

I can't pick this numbers for formula $\cos(x)\cos(y) - \sin(x)\sin(y)$.

May you help me? Maybe I can use different way, but this way is more simple

user0102
  • 21,572
chr
  • 43

2 Answers2

1

To choose numbers as you want, you need that the sum of their squares is $1$. You can achieve this by writing $$ \frac1{\cos x-3\sin x}=\frac1{\sqrt{10}}\,\frac1{\frac1{\sqrt{10}}\,\cos x -\frac3{\sqrt{10}}\,\sin x}. $$

Martin Argerami
  • 205,756
1

Remember that:

$$\int \frac{dx}{\cos(x)-3\sin(x)}=\int\frac{dx}{-\sqrt{1+(-3)^3}\sin\left(x+\cot^{-1}(-3)\right)}=-10^{-\frac12}\int \csc\big(x-\cot^{-1}(3)\big)dx$$

Since $\frac d{dx}\ln\left(\tan\left(\frac {x+a}2\right)\right)=\csc(x+a)$:

$$\int \frac{dx}{\cos(x)-3\sin(x)}=c-10^{-\frac12} \ln\left(\tan\left(\frac {x-\cot^{-1}(3)}2\right)\right) $$

Please correct me and give me feedback!

Differentiated result

Тyma Gaidash
  • 12,081