0

How to prove that:

$$e^{\frac{1}{n}} \le 1 + \frac{1}{n - 1}$$

where $n\in\mathbb{N}, n \ge 2$.

I can't seem to find any connection from description after limit and this equation.

This is part of the following equation proving limit of $\frac{e^{x} - 1}{x} = 1$ for $x \xrightarrow{}0$:

enter image description here

Source: https://www2.karlin.mff.cuni.cz/~halas/MA/MA1/kopacek_-_mat._analyza_nejen_pro_fyziky_1.pdf page 78

meerkat
  • 371

0 Answers0