How to prove that:
$$e^{\frac{1}{n}} \le 1 + \frac{1}{n - 1}$$
where $n\in\mathbb{N}, n \ge 2$.
I can't seem to find any connection from description after limit and this equation.
This is part of the following equation proving limit of $\frac{e^{x} - 1}{x} = 1$ for $x \xrightarrow{}0$:
Source: https://www2.karlin.mff.cuni.cz/~halas/MA/MA1/kopacek_-_mat._analyza_nejen_pro_fyziky_1.pdf page 78
