The question: Let $f(x) = 1 + \sum_{i=1}^{n} x^i $. Find all the local minima and local maxima of $f(x)$. For each local minimum or maximum $(c, f(c))$, find the integer $k$ which satisfies $k \le c < k+1$.
Here's my partial solution:
We shall use the property that $f'(c) = 0$.
Consider $f'(x) = 1 + \sum_{i=1}^{n-1} (i+1)x^{i} $. Notice that $f'(x) > 0$ if $x \ge 0$. Since we only wish to find the values of $x$ such that $f'(x) = 0$, we shall assume $x < 0$. \begin{align} \implies f(x) & = \frac{x^{n+1} - 1}{x - 1} \\~\\ \implies f'(x) & = \frac{nx^{n+1} - nx^n - x^n + 1}{(x-1)^2} \\~\\ \text{Let $y = -x$.} \\~\\ \implies f'(x) & = \frac{n(-y)^{n+1} - n(-y)^n - (-y)^n + 1}{(1 + y)^2} \end{align}
If $2\nmid n$, then $ f'(x) = \dfrac{ny^{n+1} + ny^n + y^n + 1}{(1+y)^2} $. This implies that $f'(x) > 0$ if $2\nmid n$. So we shall assume that $2 | n$.
\begin{align} \implies f'(x) = \dfrac{-ny^{n+1} - ny^n - y^n + 1}{(1 + y)^2} \end{align}
So, $f'(x) = 0$ iff $ny^{n+1} + ny^n + y^n - 1 = 0$.
I have no idea how to proceed from here. Is it even possible to find a neat expression for $x$ or $y$ in terms of $n$?
But, it's easy to see that $ 0 < y \le 1$, so $k=-1$ for all local minima and maxima (which exist only when $2 | n$). Also, I'm not sure if this is useful, but I noticed that $f(x) = 1 + nx^{n + 1}$ if $f'(x) = 0$.
I can prove that $f''(x) > 0$ if $f'(x) = 0$ which implies that we only get local minima, and that every solution to $f'(x) = 0$ produces a local minimum. I guess there's that.
– royaljelly Jun 06 '22 at 07:40