When I was studying on a conjecture, I noticed this problem:
- If $q_1<q_2\in(0,\frac{1}{2})\subset\mathbb{Q}$, then $f(q_1,q_2)=\cos(q_1\pi)-\cos(q_2\pi)$ is bijective between the domain and the image set?
I find the only counter example with the help of wolfram mathematica: $$ \cos \left(\frac{2 \pi }{7}\right)-\cos \left(\frac{3 \pi }{7}\right)=\cos \left(\frac{\pi }{7}\right)-\cos \left(\frac{\pi }{3}\right) $$ It is confused why there has the only counter example.
This reflects a somehow special property of trigonometric functions, because it does not always hold in other functions, for example:
- If $q_1<q_2\in\mathbb{Q}$, then $f(q_1,q_2)=q_2^2-q_1^2$ is not bijective because there are counter examples : $25^2-20^2=39^2-36^2$and so on.
More details: I find another conjectures with the help of wolfram mathematica.
$\textbf{Conjecture 1.}$ If integer $n\geq 9,n=2^a p^b, a,b \geq 0$, p is a prime and $a\geq2$ if $b=1$, then when there are linear relationships in $\left\{ \cos(\frac{k\pi}{n}):k\in \left[1,\left\lfloor \frac{n-1}{2}\right\rfloor \right]\subset \mathbb{Z}\right\}$, the number of $\cos(\frac{k\pi}{n})$ in each set of linear relationships is $p$.
For example, if $n = 40$, we have $$ \cos \left(\frac{3 \pi }{8}\right)+\cos \left(\frac{\pi }{40}\right)-\cos \left(\frac{7 \pi }{40}\right)-\cos \left(\frac{9 \pi }{40}\right)+\cos \left(\frac{17 \pi }{40}\right)=0\\ -\cos \left(\frac{\pi }{4}\right)+\cos \left(\frac{\pi }{20}\right)-\cos \left(\frac{3 \pi }{20}\right)+\cos \left(\frac{7 \pi }{20}\right)+\cos \left(\frac{9 \pi }{20}\right)=0\\ -\cos \left(\frac{\pi }{8}\right)+\cos \left(\frac{3 \pi }{40}\right)-\cos \left(\frac{11 \pi }{40}\right)+\cos \left(\frac{13 \pi }{40}\right)+\cos \left(\frac{19 \pi }{40}\right)=0 $$ each set of linear relationships is $5$, $5$ is the largest prime factor of $40$.
I'm just an undergraduate student at the university and I don't have any idea to prove these two conjectures. It would be very useful if someone could give a counter example or provide some ideas for proof.