Let $f(x)=x^4-2x^2-2 \in \mathbb{Q}[x]$. Find the the roots $\alpha,\; \beta$ of $f(x)$ such that $\mathbb{Q}(\alpha) \cong \mathbb{Q}(\beta)$.What is the splitting field of $f(x)$.
Attemption :
I consider the theorem saying:
$$\text{If F is a field and } f(x) \in \text{F[x] is irreducible over F with } f(a)= 0, \text{a} \in \text{F(a). F(a) is some extension of F that contains the root of } f(x) \text{, then } \dfrac{F[x]}{\langle f\rangle} \cong F(a)$$
We observe that $f(x)$ has $4$ roots and we also observe that neither of those roots does not contained in $\mathbb{Q}$ since by Eisenstein Criterion with $p=2$ we see $f$ is irreducible over $\mathbb{Q}$. Now, let $x^2:=u$ using these I defined $g(u)=u^2-2u-2 \in \mathbb{Q}[u]$
$$(u-1)^2-3=0 \rightarrow u=1\pm\sqrt{3}$$ Using back substitution we have;
$$x_{1,2}=\pm\sqrt{1+\sqrt{3}}, \; x_{3,4}=\pm i\sqrt{\sqrt{3}-1}$$
Using the theorem above we have:
$$\dfrac{Q[x]}{\langle x^4-2x^2-2\rangle} \cong \mathbb{Q}\left(\sqrt{1+\sqrt{3}}\right)$$ and $$\dfrac{Q[x]}{\langle x^4-2x^2-2\rangle} \cong \mathbb{Q}\left(i\sqrt{\sqrt{3}-1}\right)$$
Means that $\mathbb{Q}\left(\sqrt{1+\sqrt{3}}\right) \cong \mathbb{Q}\left(i\sqrt{\sqrt{3}-1}\right)$
And finally the splitting field is $$\mathbb{Q}\left(\left(\sqrt{1+\sqrt{3}}\right),\left(i\sqrt{\sqrt{3}-1}\right)\right)$$
Do I make any mistake? Thanks in advance!