I have recently come across this result.
Theorem: Let $A$ be a convex subset of a t.v.s. $X$. If $\operatorname{int} (A) \neq \emptyset$, then $\operatorname{aint} (A) = \operatorname{int} (A)$.
Here $\operatorname{aint} (A)$ is the algebraic interior of $A$.
My attempt: Clearly, $\operatorname{int} (A) \subset \operatorname{aint} (A)$. Let's prove the converse. Assume $a \in \operatorname{aint} (A)$. We want to show $a \in \operatorname{int} (A)$. Fix $b \in \operatorname{int} (A)$. There is $t>0$ such that $c := a+t(a-b) \in A$. It follows that $a = (1-\lambda)b+\lambda c$ with $\lambda := 1/ (1+t)$. Then $a \in U := (1-\lambda) \operatorname{int} (A) +\lambda c \subset A$. Notice that $(1-\lambda) \operatorname{int} (A)$ is open, so $U$ is open. This completes the proof.
Could you have a check on my attempt?
Is below related statement true? If not, please provide a counter-example.
Let $A$ be a convex subset of a t.v.s. $X$. If $\operatorname{aint} (A) \neq \emptyset$, then $\operatorname{aint} (A) = \operatorname{int} (A)$.