Let $H$ be a Hilbert space. Let $A: H\to H$ be a bounded linear operator which is positive definite. Suppose $B \eqsim A^{-1}$, i.e. $$\forall x\in H,\quad m(A^{-1}x,x) \le (Bx,x) \le M(A^{-1}x,x).$$
Do we have the following $$\frac{1}{M}(Ax,x)\le (B^{-1}x,x)\le\frac{1}{m}(Ax,x)?$$
My thoughts:
Since $A$ is positive definite, then $\|x\|_A =(Ax,x)$ defines a norm. So, the above given condition is equivalent to $$m\|x\|_{A^{-1}} \le \|x\|_B \le M\|x\|_{A^{-1}} ~.$$ So, these two norms are equivalent. I guess $\|\cdot\|_A$ and $\|\cdot\|_{B^{-1}}$ are equivalent as well. But I don't know what to do next.