Let $(E,\mathcal E)$ be a measurable sapce, $$\mathcal E_b:=\left\{f:E\to\mathbb R\mid f\text{ is bounded and }\mathcal E\text{-measurable}\right\}$$ be equipped with the surepmum norm and $(\kappa_t)_{t\ge0}$ be a Markov semigroup on $(E,\mathcal E)$. Moreover, let $$(\kappa_tf)(x):=\int\kappa_t(x,{\rm d}y)f(y)\;\;\;\text{for }f\in\mathcal E_b.$$ Note that $$\kappa_tf\in\mathcal E_b\;\;\;\text{for all }f\in\mathcal E_b\tag1.$$
If $f\in\mathcal E_b$, are we able to show that $$[0,\infty)\to[0,\infty)\;,\;\;\;t\mapsto\left\|\kappa_tf\right\|_\infty\tag2$$ is Borel measurable? If not, are we able to impose a suitable assumption ensuring that?