I am trying to evaluate $\cos(\alpha+\beta+\gamma)$
This is what I have done so far:
I know $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$
and $\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$
Treating $\cos(\alpha+\beta+\gamma)$ as $\cos[(\alpha+\beta)+\gamma]$
means that I can write $\cos(\alpha+\beta+\gamma) = \cos(\alpha +\beta) \cos\gamma - \sin(\alpha+\beta)\sin\gamma$
Taking the $\cos(\alpha +\beta) \cos\gamma$ part first: $\cos(\alpha +\beta) \cos\gamma= \cos\alpha\cos\beta\cos\gamma -\sin\alpha\sin\beta\cos\gamma$
and here is the part where I am struggling with getting the signs correct:
$- \sin(\alpha+\beta)\sin\gamma = -\sin\alpha\cos\beta\sin\gamma - \cos\alpha\sin\beta\sin\gamma$
To give $\cos(\alpha+\beta+\gamma) = \cos\alpha\cos\beta\cos\gamma -\sin\alpha\sin\beta\cos\gamma-\sin\alpha\cos\beta\sin\gamma - \cos\alpha\sin\beta\sin\gamma$
I am really unsure that I have my signs correct.