Following Jack D' Aurizio's suggestion from the comments, we start off with the well-known infinite series expansion for $\arcsin x$
$$\frac {\arcsin x}{\sqrt{1-x^2}}=\sum\limits_{n=0}^{+\infty}\frac {4^nx^{2n+1}}{(2n+1)\binom {2n}n}$$
The right-hand side looks somewhat close to the infinite series under question, with the main difference being the $4^n$ in the numerator and the linear $2n+1$ term and binomial in the denominator. To transform the right-hand side into the desired form, divide both sides by $x$ and integrate with respect to $x$. This will add an extra $2n+1$ term in the denominator
$$\sum\limits_{n=0}^{+\infty}\frac {4^nx^{2n+1}}{(2n+1)^2\binom {2n}n}=\int\frac {\arcsin x}{x\sqrt{1-x^2}}\,\mathrm dx\tag{1}$$
Next, make the substitution $x=\sin\theta$. The purpose of this substitution is to exploit another well-known integral identity of $\sin\theta$
$$\int\limits_0^{\pi/2}\sin^{2n+1}\theta\,\mathrm d\theta=\frac {\sqrt\pi\Gamma(n+1)}{(2n+1)\Gamma\left(n+\frac 12\right)}=\frac {4^n}{(2n+1)\binom {2n}n}$$
Upon integrating $(1)$, the left-hand side becomes the infinite series
$$\sum\limits_{n=0}^{+\infty}\frac {16^n}{(2n+1)^3\binom {2n}n^2}=\Re\int\limits_0^{\pi/2}\theta\log\left(\frac {1-e^{i\theta}}{1+e^{i\theta}}\right)\,\mathrm d\theta+\Im\int\limits_0^{\pi/2}\operatorname{Li}_2\left(-e^{i\theta}\right)-\operatorname{Li}_2\left(e^{i\theta}\right)\,\mathrm d\theta\tag{2}$$
The first integral can be evaluated by splitting apart the natural logarithm term and then using integration by parts on $u=x$ and $v=i\operatorname{Li}_2\left(\mp e^{ix}\right)$
$$\int\limits_0^{\pi/2}x\log\left(1\pm e^{ix}\right)\,\mathrm dx=\frac {\pi i}2\operatorname{Li}_2(\mp i)-\operatorname{Li}_3(\mp i)+\zeta(3)$$
Subtracting the two integrals gives
$$\int\limits_0^{\pi/2}x\log\left(\frac {1-e^{ix}}{1+e^{ix}}\right)\,\mathrm dx=\frac {\pi i}2\operatorname{Li}_2(i)-\frac {\pi i}2\operatorname{Li}_2(-i)+\operatorname{Li}_3(-i)-\operatorname{Li}_3(i)\tag{3}$$
The complex polylogarithmic functions can be further simplified by using their respective infinite-sum definition and collecting the real and imaginary components. For instance, with $\operatorname{Li}_2(i)$, we have
$$\operatorname{Li}_2(i)=\sum\limits_{n=1}^{+\infty}\frac {(-1)^n}{(2n)^2}+i\sum\limits_{n=1}^{+\infty}\frac {(-1)^{n-1}}{(2n-1)^2}=-\frac {\pi^2}{48}+iG$$
Where $G$ is Catalan's constant. Repeating the same process with the other logarithms, we have the following
$$\begin{align*}\operatorname{Li}_2(\pm i) & =-\frac {\pi^2}{48}\pm iG\tag{4}\\\operatorname{Li}_3(\pm i) & =-\frac 3{32}\zeta(3)\pm\frac {\pi^3 i}{32}\tag{5}\end{align*}$$
Hence
$$\begin{align*}\Re\int\limits_0^{\pi/2}x\log\left(1-e^{ix}\right)\,\mathrm dx & =\frac {35}{32}\zeta(3)-\frac {\pi G}2\\\Re\int\limits_0^{\pi/2}x\log\left(1+e^{ix}\right)\,\mathrm dx\, & =\frac {\pi G}2-\frac {21}{32}\zeta(3)\end{align*}$$
Taking the real part of equation $(3)$, then
$$\Re\int\limits_0^{\pi/2}x\log\left(\frac {1-e^{ix}}{1+e^{ix}}\right)\,\mathrm dx=-\pi G+\frac 74\zeta(3)\tag{6}$$
The latter two integrals can both be solved using substitution
$$\begin{align*}\int\limits_0^{\pi/2}\operatorname{Li}_2\left(-e^{ix}\right)\,\mathrm dx & =-\frac 34\zeta(3)i-i\operatorname{Li}_3(-i)\tag{7}\\\int\limits_0^{\pi/2}\operatorname{Li}_2\left(e^{ix}\right)\,\mathrm dx & =\zeta(3) i-i\operatorname{Li}_3(i)\tag{8}\end{align*}$$
Putting everything together, then we get
$$\begin{align*}\sum\limits_{n=0}^{+\infty}\frac {16^n}{(2n+1)^3\binom {2n}n^2} & =\frac 74\zeta(3)-\pi G+\frac 34\zeta(3)+\zeta(3)\\ & =\frac 72\zeta(3)-\pi G\end{align*}$$