There is an antiderivative
$$\int e^{\frac{t^2}{2}} \text{erf}\left(\frac{t}{\sqrt{2}}\right)\,dt=\frac{t^2 }{\sqrt{2 \pi }}\, _2F_2\left(1,1;\frac{3}{2},2;\frac{t^2}{2}\right)=\sum_{n=1}^\infty\frac {t^{2n} } {2^{n+\frac{1}{2}}\ n\ \Gamma \left(n+\frac{1}{2}\right) }$$
$$\color{blue}{F(r)=\sum_{n=1}^\infty\frac {r^{2n}-1 } {2^{n+\frac{1}{2}}\ n\ \Gamma \left(n+\frac{1}{2}\right) }}$$
Computational aspects
For the computation of the initial sum, it is quite simple since, if
$$a_n=\frac {t^{2n} } {2^{n+\frac{1}{2}}\ n\ \Gamma \left(n+\frac{1}{2}\right)}$$
$$a_{n+1}=\frac{n\, t^2}{(n+1) (2 n+1)}\, a_n \qquad \text{with}\qquad a_1=\frac{t^2}{\sqrt{2 \pi }}$$
On the other hand, if we search for $n$ such that $a_n \leq 10^{-k}$, a slight overestimate is given by
$$n \sim \frac 12 t^2\,e^{1+W(b)}-1 \qquad \text{with}\qquad b=\frac{1}{e t^2}\log \left(\frac{10^{2 k}}{\pi }\right)$$ $W(.)$ being Lambert function.
For a test with $k=20$ and $t=4$, this gives, as a real, $n=51.0778$ while the exact solution is $49.5921$.