I am trying to compute by hand this integral:
$$ \int_{-\infty}^{\infty} \operatorname{sech}(x) \tanh(x)\cos(x+x_0) \,\mathrm dx
=\int_{-\infty}^{\infty} \frac{\cos (x+x_0)}{\cosh x} \,\mathrm dx \\
=\int_{-\infty}^{\infty} \frac{e^{ix_0}\ e^{ix}+e^{-ix_0}\ e^{-ix}} {e^{x}+e^{-x}} \,\mathrm dx =\int_{-\infty}^{\infty} \frac{e^{ix_0}\ e^{(1+i)x}+e^{-ix_0}\ e^{(1-i)x}} {e^{2x}+1} \,\mathrm dx $$
Then we subsitute $t=\ e^{2x} ,\mathrm dx=\frac{1}{2t}\,\mathrm dt$ so we get:
$$=\frac{1}{2}\int_{0}^{\infty} \frac{e^{ix_0}\ t^{1/2(1+i)}+e^{-ix_0}\ t^{1/2(1-i)}}{t+1}\ x^{-1} \,\mathrm dt \\ =\frac{1}{2}\int_{0}^{\infty}\frac{e^{ix_0}\ t^{1/2(-1+i)}}{t+1}\,\mathrm dt\,+ \frac{1}{2}\int_{0}^{\infty}\frac{e^{-ix_0}\ t^{1/2(-1-i)}}{t+1}\,\mathrm dt $$
It's true that: $\int_{0}^{\infty}\frac{x^n}{x+1}\,\mathrm dx= \frac{-\pi}{\sin(n\pi)}$, so our integral is:
$$=\frac{1}{2}\left[e^{ix_0}\ \frac{-\pi}{\sin (-\frac{\pi}{2}\, +i\ \frac{\pi}{2})}\,+e^{-ix_0}\ \frac{-\pi}{\sin (-\frac{\pi}{2}\, -i\ \frac{\pi}{2})}\right]\\ =\frac{\pi}{2\cosh(\frac{\pi}{2})}(e^{ix_0}+e^{-ix_0})\\ =\pi \operatorname{sech}(\pi /2)\cos x_0$$
However, in bibliography I find it equal to
$$-\pi \operatorname{sech}(\pi /2)\sin(x_0).$$
What am I doing wrong?.
Thanks in advance.