I'm studying a post https://math.stackexchange.com/a/2203293/673047 which gives a nice proof for $H_n = \Theta( \log n)$
I understand most of the proof except for the part which rewrites $\frac{1}{2}k +\frac{1}{2^k}\leq H_{2^k} \leq k + \frac{1}{2^k}$ as $\frac{1}{2} \log_2 n \leq H_n \leq \log_2n + 1$
I know $2^{\log_2 n}=n$. How do I get $\frac{1}{2} \log_2 n \leq H_n \leq \log_2n + 1$ from $\frac{1}{2}k +\frac{1}{2^k}\leq H_{2^k} \leq k + \frac{1}{2^k}$?