my attempt:
let's put $2000 \choose 2000$+...+$2000 \choose 1001 $+...+$2000 \choose 8 $+$2000 \choose 5$+$2000 \choose 2$=$A+B$
with $A$=$2000 \choose 2000$+...+$2000 \choose 1001 $
and
$B$=$2000 \choose 998 $...+$2000 \choose 8 $+$2000 \choose 5$+$2000 \choose 2$
using this $ {n \choose k}= {n \choose n-k}$ we can make $A$=$2000 \choose 0$+$2000 \choose 3$+$2000 \choose 6$...+$2000 \choose 999$,and we have $B$=$2000 \choose 998 $...+$2000 \choose 8 $+$2000 \choose 5$+$2000 \choose 2$
so $A+B$=$2000 \choose 0$+$2000 \choose 2$+$2000 \choose 3$+$2000 \choose 5$+...+$2000 \choose 999$=$\sum_{k=0}^{2000} { 2000 \choose k}-\sum_{k=0}^{2000} { 2000 \choose 3k+1}=2^{2000}-\frac{2^{2000}+2}{3}=2.\frac{2^{2000}-1}{3}$
beacause $\sum_{k=0}^{2000} { 2000 \choose 3k+1}=\frac{2^{2000}+2}{3}$.
does my attempt is correct?