I am trying to find $$\binom{1000}{3}+\binom{1000}{8}+\binom{1000}{13}+\dots+\binom{1000}{998}=?$$
My work:
Let $\omega=\exp(\displaystyle\frac{2\pi i}{5}) $ and so $\omega^5=1$ . Then $1 + \omega+\omega^2+\omega^3+\omega^4=0$
$$(1+1)^{1000}+w^2(1+w)^{1000}+w^4(1+w^2)^{1000}+w^6(1+w^3)^{1000}+w^8(1+w^4)^{1000}\\=\sum_{k=0}^{1000}\bigg[\binom{1000}{k}+\binom{1000}{k}w^{k+2}+\binom{1000}{k}w^{2k+4}+\binom{1000}{k}w^{3k+6}+\binom{1000}{k}w^{4k+8}\bigg]\\= 5\bigg[\binom{1000}{3}+\binom{1000}{8}+\binom{1000}{13}+\dots+\binom{1000}{998}\bigg]$$
However , when I come to calculate the result of $(1+1)^{1000}+w^2(1+w)^{1000}+w^4(1+w^2)^{1000}+w^6(1+w^3)^{1000}+w^8(1+w^4)^{1000}$ , I stuck in it , because I could not simplify it using $\omega^5=1$ or $1 + \omega+\omega^2+\omega^3+\omega^4=0$.
Hence , I am looking for helps to find a closed formula for the binomial expansion by simplifying $(1+1)^{1000}+w^2(1+w)^{1000}+w^4(1+w^2)^{1000}+w^6(1+w^3)^{1000}+w^8(1+w^4)^{1000}$
ADDENTUM: I want to reach an integer solution, as it is expected from this expression. For example, Find the value of $\binom{2000}{2} + \binom{2000}{5} + \binom{2000}{8} + \cdots \binom{2000}{2000}$ , answer of this question is $(2^{2000}+2)/3$. It is what kind of answer I want to reach. So, can you help me to simplify given expression into this type of integer result answer ?
Thanks in advance !!