0

I was ... lazy doing my job, so here is something more general of what has been presented in the link below.
Find $\lim_{n \to \infty}\frac{x_n}{\sqrt{n}}$ where $x_{n+1}=x_n+\frac{n}{x_1+x_2+\cdots+x_n}$

Problem: Let $p_n$ be a sequence of nonnegative real numbers. Consider a a positive sequence $\{x_n\}$ satisfying: $$x_{n+1}=x_n+\frac{p_n}{x_1+x_2+x_3+...+x_n}.$$ Suppose that $$\lim_{n \rightarrow \infty} F_n =\infty,$$ and that $$\lim_{n \rightarrow +\infty} \frac{nF_n}{F_1+F_2+...+F_n}=c \in (1,\infty).$$ where $F_n:=\sqrt{\frac{p_1}{1}+\frac{p_2}{2}+...+\frac{p_{n-1}}{n-1} }.$
Then, $$\lim_{n \rightarrow \infty} \frac{x_n}{F_n}=\sqrt{2c}.$$

Example : 1) If $p_n=n^{2\beta} (\beta >0)$, then $F_n \sim \frac{n^{\beta}}{\sqrt{2\beta}}$, $c=\beta+1$.
2)If $p_n=nd_n$ where $d_n$ is the number of divisors of $n$, then $F_n\sim \sqrt{n\ln(n)}, c= \frac{3}{2}. $

Remark: Even more general results can also be proven but the present approach has to be changed ( For example, $c$ can be equal to $1$ or with a different kind of recurrence relations in a small conjecture given in https://mathoverflow.net/questions/426341/find-lim-n-to-infty-fracx-n-sqrtn-where-x-n1-x-n-fracnx-1 ).

1 Answers1

1

Lemma: There is a number $c' \in (0,c)$ such that: $$\liminf_{n \rightarrow \infty} \frac{ p_1+p_2+...+p_n}{H_{n+1}^2-H_n^2} \ge c',$$ where $H_{n}:=F_1+F_2+...+F_n.$
Remark The condition $c<c'$ is meaningless in the statement of the above lemma. However, we require $c'<c$ so that the later-defined function $g$ will be strictly increasing.

Proof for Lemma ( presented at the end of this post).

Solution for the main problem :
Because $p_n \ge 0$, $(x_n)$ is increasing.
Because $$x_{n+1} = x_n+\frac{2p_n}{x_1+x_2+...+x_n}\le x_n+\frac{2p_n}{nx_1},$$ by induction, we imply that : $x_{n+1}^2 \le \frac{2}{x_1}F_{n+1}^2$. Therefore, $\limsup \frac{x_n}{F_n} <\infty.$
Because $$x_{n+1}^2 = x_n^2+\frac{2p_nx_n}{x_1+x_2+...+x_n}+\frac{p_n^2}{(x_1+x_2+...+x_n)^2} \ge x_n^2+\frac{2p_n}{n},$$ by induction, we imply that : $x_{n+1}^2 \ge 2F_{n+1}^2$. Therefore, $\liminf \frac{x_n}{F_n} \ge \sqrt{2}.$
Now, let $s_n=x_1+x_2+...+x_n$ and $a \in (0, \sqrt{2c}]$ is a real number such that: $$ \liminf \frac{x_n}{F_n} \ge a $$

Now, we consider the following relation: \begin{align} s_{n+1}^2-2s_n^2+s_{n-1}^2&= 2s_n(x_{n+1}-x_n)+x_n^2+x_{n+1}^2=2p_n+x_n^2+x_{n+1}^2 \end{align} Therefore, by definition of $a$ and the properties of $\liminf$, we deduce that: $$ \liminf \frac{s_{n+1}^2-2s_n^2+s_{n-1}^2}{\frac{2}{a^2}p_n+F_n^2+F_{n+1}^2} \ge a^2. $$ Thus, by Cesaro's theorem, we have that: $$ \liminf \frac{s_{n+1}^2-s_n^2}{S_{n+1}} \ge a^2. $$ where \begin{align} S_{n+1}&:=\sum_{m=1}^n \left( \frac{2}{a^2}p_m+F_m^2+F_{m+1}^2 \right)\\ \end{align} Besides,\begin{align} H_{n+1}^2-2H_n^2+H_{n-1}^2&= 2H_n(F_{n+1}-F_n)+F_n^2+F_{n+1}^2 \\ &\sim \frac{1}{c}n(F_{n+1}+F_n)(F_{n+1}-F_n)+F_n^2+F_{n+1}^2 \\ &=\frac{p_n}{c}+F_n^2+F_{n+1}^2. \end{align} Thus, by combining with our lemma, we have that: $$ \liminf \frac{1}{\left(\frac{2}{a^2}-\frac{1}{c} \right)c'+1}.\frac{s_{n+1}^2-s_n^2}{H_{n+1}^2-H_n^2} \ge a^2.$$ In consequences, $\liminf \frac{s_{n+1}^2}{H_{n+1}^2} \ge a^2\left[ \left(\frac{2}{a^2}-\frac{1}{c} \right)c'+1 \right]=: g(a).$ Therefore, $$\limsup_{n \rightarrow \infty}\frac{x_{n+1}-x_n}{F_{n+1}-F_n}=\limsup_{n \rightarrow \infty} \frac{p_n}{ s_n(F_{n+1}-F_n)}=\limsup_{n \rightarrow \infty} \frac{n(F_{n+1}+F_n)}{ s_n} \le \frac{2c}{\sqrt{g(a)}}.$$ So, we have proven that if $\liminf\frac{x_n}{F_n}> a \in (0, \sqrt{2c}]$, $\limsup \frac{x_{n}}{F_n} \le \frac{2c}{\sqrt{g(a)}}.$($*$)
Similarly, we can prove that if $\limsup \frac{x_{n}}{F_n} \le b \in [\sqrt{2c},\infty)$, then $\liminf \frac{x_{n}}{F_n} \ge \frac{2c}{\sqrt{g(b)}}.$($**$)
Let $a'= \liminf \frac{x_n}{F_n}$, i.e.
If $a'< \sqrt{2c}$, then $g(a')>(a')^2$, then by (*), $\limsup \frac{x_n}{F_n} \le \frac{2c}{a'}$. Thus, by $(**)$, $\liminf \frac{x_n}{F_n} \ge \frac{2c}{ \sqrt{g(\frac{2c}{a'})}}$. In other words, $a' \ge \frac{2c}{ \sqrt{g(\frac{2c}{a'})}}$,which is a contradiction because $0<a' <\sqrt{2c}$.
Therefore, $\liminf \frac{x_n}{F_n} \ge \sqrt{2c}$.
Similarly, we can also show that $\limsup \frac{x_n}{F_n} \le \sqrt{2c}$. Therefore, we have the desired conclusion. $\square$.

Proof for Lemma We have: \begin{align} p_1+p_2+...+p_n&=nF_{n+1}^2-F_n^2-F_{n}^2-...-F_1^2\\ & \ge nF_{n+1}^2- F_{n+1}(F_1+...+F_n)=nF{n+1}^2\left(1- \frac{F_1+...F_n}{nF_n} \right)\\ &\sim \frac{c}{2}\left(2F_1+...+2F_n+F_{n+1}\right)F_{n+1}(1-c)\\ &= \frac{c(1-c)}{2}(H_{n+1}^2-H_n^2). \end{align} Hence, the conclusion. $\square$.