This question came in the Agricultural universities' cluster exam 20-21
Q) If $\arctan(2)+\arctan(3)+\arctan(4)=\theta$ then $\tan\theta=?$
(a) 9
(b) 7/2
(c) 3/5
(d) 4/5
Third-party question bank's attempt:
$$\theta=\arctan(2)+\arctan(3)+\arctan(4)=\arctan\frac{2+3+4-2\cdot3\cdot4}{1-2\cdot3-3\cdot4-4\cdot2}$$
$$\theta=\arctan\frac{3}{5}$$
$$\tan\theta=\frac{3}{5}$$
So, (c).
The formula that the question bank used is
$$\arctan(x)+\arctan(y)+\arctan(z)=\arctan\frac{x+y+z-xyz}{1-xy-yz-xz}$$
$$\text{where $xy+yz+zx\leq 1$}$$
However, $xy+yz+zx$ in the case of the above question is
$$xy+yz+zx=2\cdot3+3\cdot4+4\cdot2=26\nleq 1$$
So, isn't the third-party question bank's attempt wrong?