This question came in the Rajshahi University admission exam 2010-11
Q) Angle between $px+qy+12=0$ and $px+qy+20=0$ is-
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{2}$
(c) $\pi$
(d) None of the above
My attempt:
$$\tan\theta=\pm\frac{m_1-m_2}{1+m_1m_2}$$
$$\tan\theta=\pm\frac{-\frac{p}{q}+\frac{p}{q}}{1+\frac{p^2}{q^2}}$$
$$\tan\theta=0$$
$$\tan\theta=n\pi,n\in \mathbb{Z}$$
Now, $\theta=0,\pi,...$
There is $\pi$ in (c), so I'll go with (c). The third-party question bank agrees with me that (c) is the correct answer. However, I saw the following on the internet:
An angle is formed when one line intersect another line in some specific manner . And the degree of the angle is determined by how the lines intersect each other .
Two parellel line never intersect each other . So no angle is formed between them .
So its safe to say the angle between two lines is undefined or zero degrees.
As "undefined" or "0" has not been given in the options, should I go with (d)?