Evaluate the following integral $$\int\left(\operatorname{cos}\frac{x}{2}\cdot x^3+\frac12\right)\sqrt{4-x^2}\:\:dx$$
My work: I thought if doing it by integration by parts. So I evaluated some integrals individually. $$\int\sqrt{4-x^2}dx=\dfrac{x\sqrt{4-x^2}}{2}+2\arcsin\left(\dfrac{x}{2}\right)+c$$ and $$\int \left(\operatorname{cos}\frac{x}{2}\cdot x^3+\frac12\right)dx=16\left(\sin\left(\dfrac{x}{2}\right)\left(\dfrac{x^3}{8}-3x\right)+\cos\left(\dfrac{x}{2}\right)\left(\dfrac{3x^2}{4}-6\right)\right)+\dfrac{x}{2}+c$$ What to do now, I'm stuck. Any help is greatly appreciated.
IMO the answer is $$\dfrac{x\sqrt{4-x^2}+4\arcsin\left(\frac{x}{2}\right)}{4}+c$$ Can anybody review$?$