We first rewrite $f^{(n)}(1)$ as
$$\begin{align} n!\sum_{k=0}^{2n+2}\binom{2n+2}k\binom{\frac k2}n&=\sum_{k=0}^{2n+2}\binom{2n+2}k\cdot \frac{k}{2}\cdot \left(\frac{k}{2}-1\right)\cdot \left(\frac{k}{2}-2\right)\dots \left(\frac{k}{2}-n+1\right)\\
&=\binom{2n+2}{2n}n! + (n+1)!+\sum_{r=0}^n \binom{2n+2}{2r+1}\frac{(2r+1)(2r-1)\dots(2r+3-2n)}{2^n}\end{align}$$
The above is obtained by noticing that for every even $k$ except $2n,2n+2$ the value is $0$ (the first and second terms correspond to the values obtained at $2n,2n+2$ while the remaining odd terms are generalised by the $r$ series). The first two terms are easily found to equal $n!\cdot2(n+1)^2$ and I will now focus on the $r$ series.
A complete answer
Notice that if we define $g(x)=(1-\sqrt x)^{2n+2}$, we have
$$g^{(n)}(1)=n!\sum_{k=0}^{2n+2}(-1)^k\binom{2n+2}k\binom{\frac k2}n$$
and since all odd $k$ cancel out,
$$f^{(n)}(1)+g^{(n)}(1)=2\left(\binom{2n+2}{2n}n! + (n+1)!\right)=n!\cdot4(n+1)^2$$
To find $g^{(n)}(1)$, we notice that
$$g'(x)=(2n+2)(1-\sqrt x)^{2n+1}\cdot \frac{-1}{2\sqrt x}$$
Has a $(1-\sqrt x)^{2n+1}$ term. Similarly, $g''(x)$ will have a lowest power term of $(1-\sqrt x)^{2n}$, $g'''(x)$ will have $(1-\sqrt x)^{2n-1}$ and so on. $g^{(n)}(x)$ thus has it's lowest power term being $(1-\sqrt x)^{n+2}$. Thus,
$$g^{(n)}(1)=0\implies \boxed {f^{(n)}(1)=n!\cdot4(n+1)^2}$$
If the above method seemed a little hand-wavey to you, here is a solution without it:
Evaluating the $r$ series (An almost completed answer)
For every $r$, there are $(r+1)$ +ve terms and $(n-r-1)$ -ve terms. We can separate these and write:
$$\sum_{r=0}^n \binom{2n+2}{2r+1}\frac{(2r+1)(2r-1)\dots(2r+3-2n)}{2^n}=\sum_{r=0}^n \binom{2n+2}{2r+1}(-1)^{n-r-1}\frac{(2r+1)!!(2n-2r-3)!!}{2^n}$$
(I shall no longer write the LHS simply because of how much space this will take)
$$\begin{align}&=\sum_{r=0}^n (-1)^{n-r-1} \frac{(2n+2)!}{(2r+1)!(2n-2r+1)!}\cdot\frac{(2r+1)!!(2n-2r-3)!!}{2^n} \\
&= \sum_{r=0}^n (-1)^{n-r-1} \frac{(2n+2)!}{(2r)!!(2n-2r)!!}\cdot\frac{1}{2^n(2n-2r+1)(2n-2r-1)} \end{align}$$
We can factor out a $2^r$ and $2^{n-r}$ (a $2^n$ in total) from the double factorials in the denominator to get
$$=\frac{(2n+2)!}{4^n} \sum_{r=0}^n \frac{(-1)^{n-r-1}}{(2(n-r)+1)(2(n-r)-1)r!(n-r)!}$$
The $r!(n-r)!$ can be used to generate a $\binom nr$. Also, $(n-r)$ can be exchanged with $r$ here (because of the limits of the sum)
$$\begin{align} &=\frac{(2n+2)!}{4^n\cdot n!} \sum_{r=0}^n (-1)^{r-1}\binom nr \frac{1}{(2r+1)(2r-1)}\\
&=\frac{(2n+2)!}{4^n\cdot n!}\sum_{r=0}^n (-1)^{r}(-1)\binom nr \frac12\left(\frac{1}{2r-1}-\frac{1}{2r+1} \right)\\
&=\frac{(2n+2)!}{2\cdot 4^n\cdot n!}\sum_{r=0}^n (-1)^{r}\binom nr \left(\frac{1}{2r+1}-\frac{1}{2r-1} \right)
\end{align}$$
I tried for hours to find a solution to this, but was ultimately unsuccessful. The only patterns I could notice were that:
$$\sum_{r=0}^n (-1)^{r}\binom nr \left(\frac{1}{2r+1} \right)=\frac{(2n)!!}{(2n+1)!!}$$
$$\sum_{r=0}^n (-1)^{r}\binom nr \left(-\frac{1}{2r-1} \right)=\frac{(2n)!!}{(2n-1)!!}$$
This however does allow us to simplify to
$$\begin{align}\frac{(2n+2)!}{2\cdot 4^n\cdot n!}
\left(\frac{(2n)!!}{(2n+1)!!}+\frac{(2n)!!}{(2n-1)!!}\right)&=\frac{(2n+2)!\cdot(2n)!!}{2\cdot 4^n\cdot n!}
\left(\frac{1+(2n+1)}{(2n+1)!!}\right)\\
&=\frac{(2n+2)!!(2n)!!}{2\cdot4^n\cdot n!}(2n+2)\\
&=2(n+1)(n+1)!=n!\cdot2(n+1)^2\end{align}$$
This when paired with the original two terms does give $\boxed{n!\cdot4(n+1)^2}$ as required.
Added:
Since $\sum_{r=0}^n (-1)^{r}\binom nrx^{2r}=(1-x^2)^n$, we can write
$$\sum_{r=0}^n (-1)^{r}\binom nr \left(\frac{1}{2r+1}\right)=\int_0^1(1-x^2)^ndx$$
This is possible to evaluate by using a $x=\sin t $ sub and applying Walli's Formula.
$$\int_0^1(1-x^2)^ndx=\int_0^\frac \pi2(\cos t)^{2n+1} dt=W_{2n+1}=\boxed{\frac{(2n)!!}{(2n+1)!!}}$$
Also,$$\sum_{r=1}^n (-1)^{r}\binom nr \left(-\frac{1}{2r-1}\right)=-\int_0^1\frac{(1-x^2)^n-1}{x^2}dx$$
Integrating by parts,
$$-\int_0^1\frac{(1-x^2)^n-1}{x^2}dx=\left[\left((1-x^2)^n-1\right)\int-\frac1{x^2}dx\right]_0^1-\int_0^1n(1-x^2)^{n-1}(-2x)\frac1xdx$$
$$\implies \sum_{r=1}^n (-1)^{r}\binom nr \left(-\frac{1}{2r-1}\right)=-1+2\int_0^1n(1-x^2)^{n-1}dx=-1+(2n)W_{2n-1}$$
Since $\sum_{r=0}^n (-1)^{r}\binom nr \left(-\frac{1}{2r-1}\right)=1+\sum_{r=1}^n (-1)^{r}\binom nr \left(-\frac{1}{2r-1}\right)$,
$$\sum_{r=0}^n (-1)^{r}\binom nr \left(-\frac{1}{2r-1}\right)=(2n)W_{2n-1}=\boxed{\frac{(2n)!!}{(2n-1)!!}}$$