Given a sequence $(x_n)_{n=1}^\infty$ such that $\forall n: x_n > 0$, prove that
$$\lim_{n \to\infty} \frac{x_{n+1}}{x_n} = a \implies \lim_{n \to\infty} \sqrt[n]{x_n} = a.$$
Given a sequence $(x_n)_{n=1}^\infty$ such that $\forall n: x_n > 0$, prove that
$$\lim_{n \to\infty} \frac{x_{n+1}}{x_n} = a \implies \lim_{n \to\infty} \sqrt[n]{x_n} = a.$$
The idea behind this proof is, that for $n$ sufficiently large, given that the ratio of consequent terms of the sequence is very close to $a$, we get $x_{n+1} = ax_n$, that is $x_n = a^n$. Then $\sqrt[n]{x_n} = \sqrt[n]{a^n} = a$.
Proof. Let $\epsilon > 0$. There is $n_0$ such that for all $n \ge n_0$ we have
$$a - \epsilon < \frac{a_{n+1}}{a_n} < a + \epsilon.$$
We can find bounds for $a_n$:
$$a_{n_0}(a - \epsilon)^{n - n_0} \le a_n \le a_{n_0}(a + \epsilon)^{n-n_0}.$$
Taking roots, we obtain
$$ \sqrt[n]{a_{n_0}(a - \epsilon)^{n - n_0}} \le \sqrt[n]{a_n \vphantom{()^n} } \le \sqrt[n]{a_{n_0}(a + \epsilon)^{n-n_0}}, $$ that is $$ \sqrt[n]{a_{n_0} \vphantom{()^n} }{\sqrt[n]{(a - \epsilon)^{n}}}\sqrt[n]{(a - \epsilon)^{-n_0}} \le \sqrt[n]{a_n \vphantom{()^n} } \le \sqrt[n]{a_{n_0} \vphantom{()^n} }{\sqrt[n]{(a + \epsilon)^{n}}}\sqrt[n]{(a + \epsilon)^{-n_0}}. $$
Now we have that
$$ \lim_{n \to\infty} {\sqrt[n]{a_{n_0} \vphantom{()^n} }{\sqrt[n]{(a - \epsilon)^{n}}}\sqrt[n]{(a - \epsilon)^{-n_0}}} = a - \epsilon $$
and
$$ \lim_{n \to\infty} {\sqrt[n]{a_{n_0} \vphantom{()^n} }{\sqrt[n]{(a + \epsilon)^{n}}}\sqrt[n]{(a + \epsilon)^{-n_0}}} = a + \epsilon. $$
As $\epsilon$ is arbitrary, we get that the desired limit exists and $\lim_{n \to\infty} \sqrt[n]{x_n} = a$.
Is my proof correct? I would like to get any feedback.
\sqrtthe same size, please do. – David Jul 24 '13 at 13:55\vphantom{()^n}in the body of the roots that you deem too small. And I think your proof looks fine. – Harald Hanche-Olsen Jul 24 '13 at 14:05