We want to show
\begin{align*}
\color{blue}{\sum_{n=0}^p}\,&\color{blue}{\sum_{m=0}^p(-1)^{n+m}
\binom{l+p}{l+n}\binom{l+n+m}{n}\binom{p}{m}=1}\tag{1}
\end{align*}
Here we use a technique that can be found in the classic Integral Representation and the Computation of Combinatorial Sums by G. P. Egorychev. In order to do so we write the binomial coefficient $\binom{p}{m}$ as residue of a meromorphic function, namely
\begin{align*}
\color{blue}{\binom{p}{m}}&=\frac{p!}{m!(p-m)!}=(-1)^{p-m}p!\left(\prod_{q=0}^{m-1}\frac{1}{m-q}\right)
\left(\prod_{q=m+1}^n\frac{1}{m-q}\right)\\
&\,\,\color{blue}{=(-1)^{p-m}p!\operatorname{res}_{z=m}\prod_{q=0}^p\frac{1}{z-q}}\tag{2}\\
\end{align*}
We start with the inner sum of (1) and show
\begin{align*}
\color{blue}{\sum_{m=0}^p(-1)^m\binom{l+n+m}{n}\binom{p}{m}=(-1)^p[[p=n]]}\tag{3}
\end{align*}
where we use Iverson brackets indicating the sum is $(-1)^p$ iff $p=n$ and zero otherwise.
Note: A shorter path to show (3) is provided by the answer from @MarkoRiedel.
We obtain
\begin{align*}
\color{blue}{\sum_{m=0}^p}&\color{blue}{(-1)^m\binom{l+n+m}{n}\binom{p}{m}}\\
&=\sum_{m=0}^p(-1)^p\binom{p}{m}\frac{1}{n!}\prod_{j=0}^{n-1}(l+n+m-j)\tag{4.1}\\
&=\sum_{m=0}^p(-1)^p\frac{p!}{n!}\underbrace{\operatorname{res}_{z=m}
\left(\prod_{j=0}^{n-1}(l+n+z-j)\prod_{q=0}^p\frac{1}{z-q}\right)}_{=f(z)}\tag{$\to\ (2)$}\\
&=\sum_{m=0}^p(-1)^p\frac{p!}{n!}\left(-\operatorname{res}_{z=\infty}f(z)\right)\tag{4.2}\\
&=\sum_{m=0}^p(-1)^p\frac{p!}{n!}\operatorname{res}_{z=0}
\left(\frac{1}{z^2}f\left(\frac{1}{z}\right)\right)\tag{4.3}\\
&=\sum_{m=0}^p(-1)^p\frac{p!}{n!}\lim_{z\to 0}\left(\frac{1}{z}\prod_{j=0}^{n-1}(l+n+\frac{1}{z}-j)\prod_{q=0}^p\frac{1}{\frac{1}{z}-q}\right)\\
&=\sum_{m=0}^p(-1)^p\frac{p!}{n!}\lim_{z\to 0}\left(z^{p-n}\prod_{j=0}^{n-1}\left(1+(l+n-j)z\right)
\left(\prod_{q=0}^p\frac{1}{1-qz}\right)\right)\\
&=\sum_{m=0}^p(-1)^p\frac{p!}{n!}\lim_{z\to 0}z^{p-n}\tag{4.4}\\
&\,\,\color{blue}{=(-1)^p[[p=n]]}
\end{align*}
and the claim (3) follows.
Comment:
In (4.1) we use $\binom{p}{m}=\frac{1}{m!}p(p-1)\cdots(p-m+1)$.
In (4.2) we use the sum of the residues of a meromorphic function at the poles $z=q, 0\leq q\leq p$ plus the residue at $\infty$ sum up to zero. This way we get rid of the sum and what is left is just the residue at $z=\infty$.
In (4.3) we use the identity
\begin{align*}
\operatorname{res}_{z=\infty}f(z)=\operatorname{res}_{z=0}\left(-\frac{1}{z^2}f\left(\frac{1}{z}\right)\right)
\end{align*}
which transforms a residue at infinity to a residue at zero.
In (4.4) we do some simplifications
Using (3) we obtain
\begin{align*}
\color{blue}{\sum_{n=0}^p}\,&\color{blue}{\sum_{m=0}^p(-1)^{n+m}
\binom{l+p}{l+n}\binom{l+n+m}{n}\binom{p}{m}}\\
&=\sum_{n=0}^{p}(-1)^n\binom{l+p}{l+n}\sum_{m=0}^p(-1)^m\binom{p}{m}\binom{l+n+m}{n}\\
&=\sum_{n=0}^{p}(-1)^n\binom{l+p}{l+n}(-1)^p[[p=n]]\tag{$\to (3)$}\\
&=(-1)^p\binom{l+p}{l+p}(-1)^p\\
&\,\,\color{blue}{=1}
\end{align*}
and the claim (1) follows.