Proceeding along the OP's idea:
Let
$$G(n) := (\mathrm{e} - 1)^n\int_n^{\infty} \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t.$$
We have
$$G(n) = \sum_{k=1}^n \mathrm{e}(\mathrm{e}-1)^{k-1}\int_k^{k+1} \left(\binom{t-1}{k-1} - \binom{t-2}{k-2}\right)\mathrm{e}^{-t}\mathrm{d} t. \tag{1}$$
(The proof is given at the end.)
Using $\binom{t-1}{k-1} - \binom{t-2}{k-2} \ge 0$ for all $k\ge 1$ and $t\in [k, k+1]$, we have
\begin{align*}
G(n) &= \sum_{k=1}^n \mathrm{e}(\mathrm{e}-1)^{k-1}\int_k^{k+1} \left(\binom{t-1}{k-1} - \binom{t-2}{k-2}\right)\mathrm{e}^{-t}\mathrm{d} t\\
&\le \sum_{k=1}^\infty \mathrm{e}(\mathrm{e}-1)^{k-1}\int_k^{k+1} \left(\binom{t-1}{k-1} - \binom{t-2}{k-2}\right)\mathrm{e}^{-t}\mathrm{d} t\\
&= \sum_{k=1}^\infty \mathrm{e}(\mathrm{e}-1)^{k-1}\mathrm{e}^{-k}\int_0^{1} \left(\binom{t + k-1}{k-1} - \binom{t+k-2}{k-2}\right)\mathrm{e}^{-t}\mathrm{d} t\\
&= \int_0^1 \left[\sum_{k=1}^\infty \mathrm{e}(\mathrm{e}-1)^{k-1}\mathrm{e}^{-k}\left(\binom{t + k-1}{k-1} - \binom{t+k-2}{k-2}\right)\right]\mathrm{e}^{-t}\,\mathrm{d} t\\
&= \int_0^1 \mathrm{e}^{t}\cdot \mathrm{e}^{-t}\mathrm{d} t\\
&= 1
\end{align*}
where we use
$$\sum_{k=1}^\infty \mathrm{e}(\mathrm{e}-1)^{k-1}\mathrm{e}^{-k}\left(\binom{t + k-1}{k-1} - \binom{t+k-2}{k-2}\right) = \mathrm{e}^{t}. \tag{2}$$
(The proof of (2) is given at the end.)
We are done.
$\phantom{2}$
Proof of (1):
Let
$$F(n) := \int_n^{\infty} \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t.$$
Using the identity $\binom{t-1}{n-1} = \binom{t-2}{n-1} + \binom{t-2}{n-2}$, we have
\begin{align*}
F(n) &= \int_n^{n+1} \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t + \int_{n+1}^\infty \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t\\[5pt]
&= \int_n^{n+1} \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t + \int_{n+1}^\infty \binom{t-2}{n-1}\mathrm{e}^{-t}\mathrm{d} t + \int_{n+1}^\infty \binom{t-2}{n-2}\mathrm{e}^{-t}\mathrm{d} t\\[5pt]
&= \int_n^{n+1} \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t + \mathrm{e}^{-1}\int_{n}^\infty \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t + \mathrm{e}^{-1}\int_{n-1}^\infty \binom{t-1}{n-2}\mathrm{e}^{-t}\mathrm{d} t \\
&\qquad - \mathrm{e}^{-1}\int_{n-1}^n \binom{t-1}{n-2}\mathrm{e}^{-t}\mathrm{d} t\\
&= \mathrm{e}^{-1}F(n) + \mathrm{e}^{-1}F(n-1) + \int_n^{n+1} \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t - \mathrm{e}^{-1}\int_{n-1}^n \binom{t-1}{n-2}\mathrm{e}^{-t}\mathrm{d} t.
\end{align*}
Thus, we have
$$F(n) = \frac{1}{\mathrm{e} - 1}F(n-1) + \frac{\mathrm{e}}{\mathrm{e} - 1}\int_n^{n+1} \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t - \frac{1}{\mathrm{e} - 1}\int_{n-1}^n \binom{t-1}{n-2}\mathrm{e}^{-t}\mathrm{d} t$$
and
$$G(n) = G(n-1) + \mathrm{e}(\mathrm{e}-1)^{n-1}\int_n^{n+1} \binom{t-1}{n-1}\mathrm{e}^{-t}\mathrm{d} t - (\mathrm{e}-1)^{n-1}\int_{n-1}^n \binom{t-1}{n-2}\mathrm{e}^{-t}\mathrm{d} t.$$
Thus, we have
\begin{align*}
G(n) &= \sum_{k=1}^n \mathrm{e}(\mathrm{e}-1)^{k-1}\int_k^{k+1} \binom{t-1}{k-1}\mathrm{e}^{-t}\mathrm{d} t
- \sum_{k=1}^n (\mathrm{e}-1)^{k-1}\int_{k-1}^k \binom{t-1}{k-2}\mathrm{e}^{-t}\mathrm{d} t\\
&= \sum_{k=1}^n \mathrm{e}(\mathrm{e}-1)^{k-1}\int_k^{k+1} \binom{t-1}{k-1}\mathrm{e}^{-t}\mathrm{d} t
- \sum_{k=1}^n \mathrm{e}(\mathrm{e}-1)^{k-1}\int_{k}^{k+1} \binom{t-2}{k-2}\mathrm{e}^{-t}\mathrm{d} t\\
&= \sum_{k=1}^n \mathrm{e}(\mathrm{e}-1)^{k-1}\int_k^{k+1} \left(\binom{t-1}{k-1} - \binom{t-2}{k-2}\right)\mathrm{e}^{-t}\mathrm{d} t.
\end{align*}
We are done.
$\phantom{2}$
Proof of (2):
Denote $a = \mathrm{e}^{-1}$. Let
$$g(k) := \binom{t+k-2}{k-2}.$$
We have
\begin{align*}
\mathrm{LHS} &= \sum_{k=1}^\infty (1 - a)^{k-1}[g(k + 1) - g(k)]\\
&= -g(1) + \sum_{k=1}^\infty (1 - a)^{k-1} a\, g(k + 1)\\
&= \mathrm{e}^{-1}\sum_{k=0}^\infty (1 - \mathrm{e}^{-1})^k \binom{t + k}{k}\\
&= \mathrm{e}^{-1}\sum_{k=0}^\infty (1 - \mathrm{e}^{-1})^k \binom{-t-1}{k}(-1)^k\\
&= \mathrm{e}^{t}.
\end{align*}
where we have used
$\binom{t+k}{k} = \binom{-t-1}{k}(-1)^k$ and
$(1 + x)^n = \sum_{r=0}^\infty \binom{n}{r}x^r$ (the generalized binomial theorem).
We are done.
$$\prod_{k=1}^{n-1}(t+k)=\sum_{k=1}^{n}{n\brack k}t^{k-1} $$
$$\int_{n}^{+\infty}\binom{t-1}{n-1}e^{-t},dt=\frac{1}{(n-1)!e^n}\sum_{k=1}^{n}{n\brack k}(k-1)! $$
– Jack D'Aurizio Aug 15 '22 at 21:07