Question: Does $\limsup_{n \to \infty }\left | \frac{a_{n+1}}{a_{n}} \right |=\limsup_{n \to \infty }\left | a_n \right |^{1/{n}}$?
I guess the identity is true, given $\limsup_{n \to \infty }\left | \frac{a_{n+1}}{a_{n}} \right |\neq 0$, and here is my "proof", is it correct?
Proof:
Suppose all $a_n$ are non-zero, and $s=\limsup_{n \to \infty }\left | \frac{a_{n+1}}{a_{n}} \right | \neq 0$,
For any $\varepsilon >0$, there exists $N\in \mathbb{N}$ such that $n>N$ implies: $$s-\varepsilon < \underset{m\geq n}{\text{sup}}\left | \frac{a_{m+1}}{a_{m}} \right |<s+\varepsilon$$ $$\Rightarrow s-\varepsilon < \left | \frac{a_{n+1}}{a_{n}} \right |<s+\varepsilon$$ for all $n>N$. $$\Rightarrow (s-\varepsilon)|a_{n}| < |a_{n+1}|<(s+\varepsilon)|a_{n}|$$ $$\Rightarrow (s-\varepsilon)^{n-N}|a_{N+1}| < |a_{n+1}|<(s+\varepsilon)^{n-N}|a_{N+1}|$$ where we may set $0<\varepsilon <s$, where $s \neq0$. So, for all $n>N$, we have: $$\Rightarrow (s-\varepsilon)^{1-\frac{N+1}{n+1}}|a_{N+1}|^{1/{n+1}} < |a_{n+1}|^{1/{n+1}}<(s+\varepsilon)^{1-\frac{N+1}{n+1}}|a_{N+1}|^{1/{n+1}}$$ So, for $n>N$: $$ (s-\varepsilon)^{1-\frac{N+1}{n+1}}|a_{N+1}|^{1/{n+1}} \leq \underset{m\geq n}{\text{sup}}|a_{m+1}|^{1/{m+1}}\leq (s+\varepsilon)^{1-\frac{N+1}{n+1}}|a_{N+1}|^{1/{n+1}}$$ Now, $$(s+\varepsilon)^{1-\frac{N+1}{n+1}}|a_{N+1}|^{1/{n+1}}\underset{n \to \infty }{\rightarrow}(s+\varepsilon)(s+\varepsilon)^0(1)=s+\varepsilon$$ and $$(s-\varepsilon)^{1-\frac{N+1}{n+1}}|a_{N+1}|^{1/{n+1}}\underset{n \to \infty }{\rightarrow}(s-\varepsilon)(s-\varepsilon)^0(1)=s-\varepsilon$$
By comparison test, $$s-\varepsilon \leq \limsup_{n \to \infty }\left | a_n \right |^{1/{n}} \leq s+\varepsilon $$ for arbitrarily small $\varepsilon$.
So, $$s=\limsup_{n \to \infty }\left | a_n \right |^{1/{n}}$$ and we are done.
Any help will be appreciated!