I want to compute the integral $$\lim_{n\rightarrow \infty} \int_0^{2022\pi} \sin^n(x) dx$$
Somehow I struggle a bit. At this point now I have the following attempt.
Let me denote $I_n= \int_0^{2022\pi} \sin^n(x) dx$. Then after a small computation I get a reduction formula: $$I_n=-\frac{\sin^{n-1}(x)\cos(x)}{n}+\frac{n-1}{n}I_{n-2}$$ hence $$\lim_{n\rightarrow \infty}I_n=\lim_{n\rightarrow \infty} I_{n-2}$$ by the same reduction formula I get that $$\lim_{n\rightarrow \infty} I_n=\lim_{n\rightarrow \infty} I_{n-4}$$ But now I don't see why this could be useful for my computations.
Can maybe someone help me?