Your ‘ first law ’ is just a consequence of Stirling's approximation :
$\dfrac{n^n\sqrt{2\pi n}}{e^n}e^{\frac1{12n+1}}<n!<\dfrac{n^n\sqrt{2\pi n}}{e^n}e^{\frac1{12n}}\;\;,\;\;\forall\,n\in\mathbb N\!=\!\mathbb Z^+.\;\;\color{blue}{(*)}$
From the inequalities $\,(*)\,,\,$ it follows that
$\dfrac{\dfrac{\left(2n\right)^{2n}\sqrt{4\pi n}}{e^{2n}}e^\frac1{24n+1}}{\dfrac{n^{2n}\left(2\pi n\right)}{e^{2n}}e^\frac1{6n}}\!<\!\dfrac{\left(2n\right)!}{\left(n!\right)^2}\!<\!\dfrac{\dfrac{\left(2n\right)^{2n}\sqrt{4\pi n}}{e^{2n}}e^\frac1{24n}}{\dfrac{n^{2n}\left(2\pi n\right)}{e^{2n}}e^\frac2{12n+1}}\;,\;\;\forall\,n\in\mathbb N\;,$
$\displaystyle\dfrac{4^n}{\sqrt{\pi n}}e^{\frac1{24n+1}-\frac1{6n}}<\binom{2n}n<\dfrac{4^n}{\sqrt{\pi n}}e^{\frac1{24n}-\frac2{12n+1}}\;,\quad\forall\,n\in\mathbb N\;\;,$
$\displaystyle\dfrac{4^n}{\sqrt{\pi n}}e^{-\frac1{6n}}<\binom{2n}n<\dfrac{4^n}{\sqrt{\pi n}}\;\;,\;\;\quad\forall\,n\in\mathbb N\;.\quad\color{blue}{(1)}$
Let $\,m\,$ be any integer $\,\big(m\in\mathbb Z\big)\,$.
Let $\;\mathbb N_m^*=\big\{n\,\big|\,n\in\mathbb N\,\land\,n\geqslant m+1\big\}\subseteq\mathbb N\,.$
From the inequalities $\,(1)\,,\,$ it follows that
$\displaystyle\dfrac{4^{n-m}}{\sqrt{\pi\!\left(n\!-\!m\right)}}e^{-\frac1{6\left(n-m\right)}}\!<\!\binom{2n\!-\!2m}{n\!-\!m}\!<\!\dfrac{4^{n-m}}{\sqrt{\pi\!\left(n\!-\!m\right)}}\,,\;\forall\,n\!\in\!\mathbb N_m^*\,.\;\color{blue}{(2)}$
Moreover, from the inequalities $\,(1)\,$ and $\,(2)\,,\,$ it follows that
$\dfrac{\dfrac{4^n}{\sqrt{\pi n}}e^{-\frac1{6n}}}{\dfrac{4^{n-m}}{\sqrt{\pi\!\left(n\!-\!m\right)}}}\!<\!\dfrac{\displaystyle\binom{2n}n}{\displaystyle\binom{2n\!-\!2m}{n\!-\!m}}\!<\!\dfrac{\dfrac{4^n}{\sqrt{\pi n}}}{\dfrac{4^{n-m}}{\sqrt{\pi\!\left(n\!-\!m\right)}}e^{-\frac1{6\left(n-m\right)}}}\,,\;\;\forall\,n\!\in\!\mathbb N_m^*\;,$
$4^m\!\sqrt{1\!-\!\dfrac mn}\,e^{-\frac1{6n}}\!<\!\dfrac{\displaystyle\binom{2n}n}{\displaystyle\binom{2n\!-\!2m}{n\!-\!m}}\!<4^m\!\sqrt{1\!-\!\dfrac mn}\,e^{\frac1{6\left(n-m\right)}},\;\forall\,n\!\in\!\mathbb N_m^*\,.$
Since $\;\lim_\limits{n\to\infty}\left(\!4^m\!\sqrt{1\!-\!\dfrac mn}\,e^{-\frac1{6n}}\!\right)=\lim_\limits{n\to\infty}\left(\!4^m\!\sqrt{1\!-\!\dfrac mn}\,e^{\frac1{6\left(n-m\right)}}\!\right)=4^m\,,\,$
from the previous inequalities, by using Squeeze Theorem, it follows that
$\lim_\limits{n\to\infty} \dfrac{\displaystyle\binom{2n}n}{\displaystyle\binom{2n\!-\!2m}{n\!-\!m}}=4^m\;.$