Prove that: $$\alpha_{n}=\sum_{k=0}^{n} \binom{n+k}{n-k}\beta_{k} \Leftrightarrow \beta_{n}=\sum_{k=0}^{n} (-1)^{n-k}\frac{2k+1}{2n+1} \binom{2n+1}{n-k}\alpha_{k}$$ What I have tried:
$\Longrightarrow ):$ $$\begin{align*} \sum_{k=0}^{n} (-1)^{n-k} \frac{2k+1}{2n+1}\binom{2n+1}{n-k}\alpha_{k} &=\sum_{k=0}^{n} (-1)^{n-k} \frac{2k+1}{2n+1}\binom{2n+1}{n-k} \sum_{j=0}^{k} \binom{k+j}{k-j}\beta_{j} \\ &=\sum_{k=0}^{n} \sum_{j=0}^{k} (-1)^{n-k} \frac{2k+1}{2n+1}\binom{2n+1}{n-k} \binom{k+j}{k-j}\beta_{j} \\ &=\sum_{j=0}^{n} \sum_{k=j}^{n} (-1)^{n-k} \frac{2k+1}{2n+1}\binom{2n+1}{n-k} \binom{k+j}{k-j}\beta_{j} \\ &=\sum_{j=0}^{n} \beta_{j} \sum_{k=j}^{n} (-1)^{n-k} \frac{2k+1}{2n+1}\binom{2n+1}{n-k} \binom{k+j}{k-j} \end{align*}$$
I have verified that $RHS=\beta_{n}$ when $j=n$ and $RHS=0$ when $j=n-1$, so I guess that $$\sum_{k=j}^{n} (-1)^{n-k} \frac{2k+1}{2n+1}\binom{2n+1}{n-k} \binom{k+j}{k-j}=0$$ established when $$0\le j< n $$
$\Longleftarrow ):$
$$\begin{align*} \sum_{k=0}^{n}\binom{n+k}{n-k}\beta_{k} &=\sum_{k=0}^{n}\binom{n+k}{n-k} \sum_{j=0}^{k} (-1)^{k-j} \frac{2j+1}{2k+1} \binom{2k+1}{k-j} \alpha_{j} \\ &=\sum_{k=0}^{n} \sum_{j=0}^{k}\binom{n+k}{n-k} (-1)^{k-j} \frac{2j+1}{2k+1} \binom{2k+1}{k-j}\alpha_{j} \\ &=\sum_{j=0}^{n} \sum_{k=j}^{n}\binom{n+k}{n-k} (-1)^{k-j} \frac{2j+1}{2k+1} \binom{2k+1}{k-j}\alpha_{j} \\ &=\sum_{j=0}^{n}\alpha_{j} \sum_{k=j}^{n}\binom{n+k}{n-k} (-1)^{k-j} \frac{2j+1}{2k+1} \binom{2k+1}{k-j} \end{align*}$$ It can verified that$RHS=\alpha_{n}$ when $j=n$ and $RHS=0$ when $j=n-1$,similarly guess that $$\sum_{k=j}^{n}\binom{n+k}{n-k} (-1)^{k-j} \frac{2j+1}{2k+1} \binom{2k+1}{k-j}=0$$ established when $$0\le j< n $$
Although the general idea is there, I don't know how to prove the key two equations. I hope MSE can give me some advice, thank you very much!