I try to find
$$\lim_{n\rightarrow\infty}\bigg(1+\frac{4}{n+8}\bigg)^n$$
So I did a ratio test,
$$\lim_{n\rightarrow\infty}\frac{\bigg(1+\frac{4}{n+8}\bigg)^n}{\bigg(1+\frac{4}{n+9}\bigg)^{n+1}}$$
$$\lim_{n\rightarrow\infty}\frac{\bigg(1+0\bigg)^n}{\bigg(1+0\bigg)^{n+1}}$$
$$\lim_{n\rightarrow\infty}\frac{\bigg(1\bigg)^n}{\bigg(1\bigg)^{n+1}}=1$$
But this is wrong.
What is the right way to solve this?
Thanks