The following sum was used in an unrelated answer on math.stackexchange.com.
$$\sum_{n=0}^\infty (-1)^n \frac{\Gamma \left(\frac{n}{2}+1\right)}{n! \Gamma \left(2-\frac{n}{2}\right)}=\frac{3-\sqrt{5}}{2}$$
How can you show this to be true?
The following sum was used in an unrelated answer on math.stackexchange.com.
$$\sum_{n=0}^\infty (-1)^n \frac{\Gamma \left(\frac{n}{2}+1\right)}{n! \Gamma \left(2-\frac{n}{2}\right)}=\frac{3-\sqrt{5}}{2}$$
How can you show this to be true?
We will use the facts that $$ \frac{1}{{\Gamma\! \left( {2 - \frac{n}{2}} \right)}} = \frac{{\Gamma \!\left( {\frac{n}{2} - 1} \right)}}{{\Gamma \!\left( {2 - \frac{n}{2}} \right)\Gamma\! \left( {\frac{n}{2} - 1} \right)}} = - \frac{1}{\pi }\sin \left( {\frac{{\pi n}}{2}} \right)\Gamma \!\left( {\frac{n}{2} - 1} \right) $$ for $n\geq 3$, $$ \Gamma\! \left( {m + \frac{1}{2}} \right) = \frac{{(2m)!}}{{4^m m!}}\sqrt \pi $$ for $m\geq 0$, and $$ \sqrt {1 + x} = \sum\limits_{k = 0}^\infty {\frac{{( - 1)^{k + 1} }}{{4^k (2k - 1)}}} \binom{2k}{k}x^k $$ for $|x|<1$. Thus \begin{align*} \sum\limits_{n = 0}^\infty {( - 1)^n \frac{{\Gamma\! \left( {\frac{n}{2} + 1} \right)}}{{n!\Gamma\! \left( {2 - \frac{n}{2}} \right)}}} & = \frac{1}{2} + \sum\limits_{n = 3}^\infty {( - 1)^n \frac{{\Gamma\! \left( {\frac{n}{2} + 1} \right)}}{{n!\Gamma\! \left( {2 - \frac{n}{2}} \right)}}} \\ & = \frac{1}{2} + \frac{1}{\pi }\sum\limits_{n = 3}^\infty {( - 1)^{n + 1} \sin \left( {\frac{{\pi n}}{2}} \right)\frac{{\Gamma\! \left( {\frac{n}{2} - 1} \right)\Gamma\! \left( {\frac{n}{2} + 1} \right)}}{{n!}}} \\ & = \frac{1}{2} + \frac{1}{\pi }\sum\limits_{k = 1}^\infty {( - 1)^k \frac{{\Gamma\! \left( {k - \frac{1}{2}} \right)\Gamma\! \left( {k + \frac{3}{2}} \right)}}{{(2k + 1)!}}} \\ & = \frac{1}{2} + \sum\limits_{k = 1}^\infty { \frac{( - 1)^k}{{(2k + 1)!}}\frac{1}{{16^k }}\frac{{(2k - 2)!}}{{(k - 1)!}}\frac{{(2k + 2)!}}{{(k + 1)!}}} \\ & = \frac{1}{2} + \sum\limits_{k = 1}^\infty {\frac{{( - 1)^k }}{{16^k (2k - 1)}}} \binom{2k}{k} \\ & = \frac{3}{2} + \sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }}{{16^k (2k - 1)}}} \binom{2k}{k} \\ & = \frac{3}{2} - \sqrt {1 + \frac{1}{4}} = \frac{3}{2} - \frac{{\sqrt 5 }}{2}. \end{align*}
$$\sum_{n=0}^\infty (-1)^n \frac{\Gamma \left(\frac{n}{2}+1\right)}{n!\, \Gamma \left(2-\frac{n}{2}\right)}x^n=\frac{1}{2} \left(x^2+2-x\sqrt{x^2+4} \right)$$