The previous version is if there exists a positive real number L s.t. $\forall x \in X, ||x||_1 \le L||x||_2$, then $i_X:(X, ||.||_1) \to (X, ||.||_2)$ is continuous.
My proof is following \begin{align*} \forall \alpha \in X, \forall \epsilon > 0, \exists \delta>0, \delta < \epsilon/k \\\\ ||x-\alpha||_1 <\delta &\Rightarrow ||i(x)-i(\alpha)||_2 \\\\ &=||x-\alpha||_2<L||x-\alpha||_1 < L\delta<\epsilon \end{align*}
So the function is continuous. But the converse version is very confusing, I'm not sure if I should use contradiction or direct prove, can someone give a hint?