$\gamma$ is the straight line segment joining $0$ to $\pi - i \pi$. I need to evaluate: $\int_{\gamma} e^{\bar{z}} dz$.
Is that correct?
$$\int_{\gamma} e^{\bar{z}} dz = \int_{0}^{1} \exp \left[ (\pi + i \pi)t \right] (\pi - i \pi)dt =$$ $$ =(\pi - i \pi) \int_{0}^{1} \exp \left[ (\pi + i \pi)t \right]dt = (\pi - i \pi) \int_{0}^{1} e^{(\pi + i \pi) t}dt = $$ $$ =(\pi - i \pi) \left[\frac{1}{\pi + i \pi} \cdot e^{(\pi + i \pi) t} \right]^{1}_{0} = (...) = (e^{\pi}+1)i$$