$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{{\displaystyle #1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
& \color{#44f}{\sum_{n = 0}^{\infty}{\pars{2n - 1}!! \over 2^{n}\, n!\, \pars{2n + 1}^{2}}} =
\sum_{n = 0}^{\infty}{1 \over 2^{n}\, n!\, \pars{2n + 1}^{2}}\
\overbrace{\pars{-1}^{n}\,2^{n}\,n!{-1/2 \choose n}}
^{\ds{\pars{2n - 1}!!}}
\\[5mm] = & \
\sum_{n = 0}^{\infty}{-1/2 \choose n}{\pars{-1}^{n} \over \pars{2n + 1}^{2}} =
\left. -\,{1 \over 4}\partiald{}{a}\sum_{n = 0}^{\infty}{-1/2 \choose n}{\pars{-1}^{n} \over n + a}\right\vert_{a\ =\ 1/2}
\\[5mm] = & \
\left. -\,{1 \over 4}\partiald{}{a}\sum_{n = 0}^{\infty}{-1/2 \choose n}\pars{-1}^{n}
\int_{0}^{1}t^{n\ +\ a\ -\ 1}\,\,\,\,\dd t
\,\right\vert_{\, a\ =\ 1/2}
\\[5mm] = & \
\left. -\,{1 \over 4}\partiald{}{a}\int_{0}^{1}t^{a - 1}
\sum_{n = 0}^{\infty}{-1/2 \choose n}\pars{-t}^{n}\,\dd t
\,\right\vert_{\, a\ =\ 1/2}
\\[5mm] = & \
\left. -\,{1 \over 4}\partiald{}{a}\int_{0}^{1}t^{a - 1}\
\pars{1 - t}^{-1/2}\,\,\dd t
\,\right\vert_{\, a\ =\ 1/2}
\\[5mm] = & \
\left. -\,{1 \over 4}\partiald{}{a}
{\Gamma\pars{a}\Gamma\pars{1/2} \over \Gamma\pars{a + 1/2}}
\,\right\vert_{\, a\ =\ 1/2} =
\bbx{\color{#44f}{{1 \over 2}\,\pi\,\ln\pars{2}}} \approx 1.08879 \\ &
\end{align}